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Introduction

We study various properties which are preserved under given
conditions. These preservations generalize the notion of
(p, q)-preserving formula and its variations for correspondent
type-definable sets, with T.E. Rajabov.
We introduce and study some general principles and
hierarchical properties of expansions and restrictions of
structures and their theories. These principles are based on
upper and lower cones, lattices, and permutations. The general
approach is applied to describe these properties for classes of
ω-categorical theories and structures, Ehrenfeucht theories and
their models, strongly minimal, ω1-categorical, and stable ones.
We study some hierarchy properties of expansions and
restrictions of structures with given degrees of rigidity, with
B.Sh. Kulpeshov.
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Definition

LetM be a structure, P1 ⊆ Mk1 , . . . ,Pn ⊆ Mkn , Q ⊆ Mm be
properties, Φ = Φ(x1, . . . , xn, y) be a type with l(x1) = k1, . . . ,
l(xn) = kn, l(y) = m. We say that the tuple (P1, . . . ,Pn,Q) is
(totally) Φ-preserved, or Φ is (totally) (P1, . . . ,Pn,Q)-preserving, if
for any a1 ∈ P1, . . . , an ∈ Pn,

Φ(a1, . . . , an,M) ⊆ Q.

Here we also say on universal Φ- and (P1, . . . ,Pn,Q)-preservation.
If Φ(a1, . . . , an,M) ⊆ Q for some a1 ∈ P1, . . . , an ∈ Pn, then we
say that (P1, . . . ,Pn,Q) is existentially Φ-preserved, or Φ is
existentially (P1, . . . ,Pn,Q)-preserving.
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Definition

If Φ(a1, . . . , an,M) ∩ Q 6= ∅ for some a1 ∈ P1, . . . , an ∈ Pn and
(P1, . . . ,Pn,Q) is not existentially Φ-preserved by these tuples ai ,
then we say that (P1, . . . ,Pn,Q) is ∃-partially Φ-preserved, or Φ is
∃-partially (P1, . . . ,Pn,Q)-preserving. If this property holds for any
a1 ∈ P1, . . . , an ∈ Pn, we say that (P1, . . . ,Pn,Q) is ∀-partially
Φ-preserved, or Φ is ∀-partially (P1, . . . ,Pn,Q)-preserving.

We say that the tuple (P1, . . . ,Pn,Q) is ∃-partially
Φ-non-preserved, or Φ is ∃-partially (P1, . . . ,Pn,Q)-non-preserving,
if Φ(a1, . . . , an,M) ∩ Q 6= ∅ for some a1 ∈ P1, . . . , an ∈ Pn, where
Q = Mm \ Q. If this property holds for any a1 ∈ P1, . . . , an ∈ Pn,
we say that (P1, . . . ,Pn,Q) is ∀-partially Φ-non-preserved, or Φ is
∀-partially (P1, . . . ,Pn,Q)-non-preserving.

S. V. Sudoplatov Preserving properties



Definition

We say that the tuple (P1, . . . ,Pn,Q) is totally Φ-non-preserved, or
Φ is totally (P1, . . . , Pn, Q)-non-preserving, if
Φ(a1, . . . , an,M) ∩ Q 6= ∅ for any a1 ∈ P1, . . . , an ∈ Pn.

If Φ(a1, . . . , an,M) ⊆ Q for some a1 ∈ P1, . . . , an ∈ Pn, then we
say that (P1, . . . ,Pn,Q) is existentially Φ-disjoint, or Φ is
existentially (P1, . . . ,Pn,Q)-disjointing. If Φ(a1, . . . , an,M) ⊆ Q

for any a1 ∈ P1, . . . , an ∈ Pn, then we say that (P1, . . . ,Pn,Q) is
totally Φ-disjoint or universally Φ-disjoint, or Φ is totally
(P1, . . . ,Pn,Q)-disjointing, or universally
(P1, . . . ,Pn,Q)-disjointing.
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Definition

If Φ is a singleton {ϕ} then totally/existentially/partially
Φ-(non-)preserved/disjoint tuples are called
totally/existentially/partially ϕ-(non-)preserved/disjoint,
respectively, and ϕ is totally/existentially/partially (P1, . . . ,Pn,
Q)-(non-)preserving/disjointing.

If P1 = . . . = Pn = Q then (P1, . . . ,Pn,Q)-preserving type Φ is
called (P1, . . . ,Pn,Q)-idempotent and (P1, . . . ,Pn,Q) is
Φ-idempotent. If Φ = {ϕ} then we replace Φ by ϕ in the definition
of idempotency.
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Proposition (Rajabov – S.)

1. If a type Φ is totally (P1, . . . ,Pn,Q)-preserving/disjointing and
P1 × . . .× Pn 6= ∅ then Φ is existentially
(P1, . . . ,Pn,Q)-preserving/disjointing.
2. If a type Φ is ∀-partially (P1, . . . ,Pn,Q)-(non-)preserving and
P1 × . . .× Pn 6= ∅ then Φ is ∃-partially
(P1, . . . ,Pn,Q)-(non-)preserving.

Proposition (Rajabov – S.)

For any type Φ and definable or non-definable relations
P1, . . . ,Pn,Q in a structureM the following conditions are
equivalent:
1) Φ is totally/existentially (P1, . . . ,Pn,Q)-preserving;
2) Φ is totally/existentially (P1, . . . ,Pn,Q)-disjointing.
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Proposition (Rajabov – S.)

For any (P1, . . . ,Pn,Q) and Φ, (P1, . . . ,Pn,Q) is
totally/existentially/partially Φ-(non-)preserved/disjoint iff
(P1 × . . .× Pn,Q) is totally/existentially/partially
Φ-(non-)preserved/disjoint, where (x1, . . . , xn, y) in Φ is replaced
by (x 1̂ . . .ˆxn, y).
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Definition. Let T be a complete theory,M |= T . Consider types
p(x), q(x) ∈ S(∅), realized inM, and all (p, q)-preserving formulae
ϕ(x , y) of T , i. e., formulae for which there is a ∈ M such that
|= p(a) and ϕ(a, y) ` q(y). For each such a formula ϕ(x , y), we
define a relation Rp,ϕ,q 
 {(a, b) | M |= p(a) ∧ ϕ(a, b)}. If
(a, b) ∈ Rp,ϕ,q, then the pair (a, b) is called a (p, ϕ, q)-arc.

Proposition (Rajabov – S.)

For any types p(x), q(y) ∈ S(∅) and a formula ϕ(x , y) the
following conditions are equivalent:
1) the formula ϕ is (p, q)-preserving;
2) the pair (p(M), q(M)) is totally ϕ-preserved;
3) the pair (p(M), q(M)) is existentially ϕ-preserved.
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Proposition (Rajabov – S.)

If some conjunction of formulae in a type Φ is totally/existentially
(P1, . . . , Pn,Q)-preserving/disjoint then Φ is totally/existentially
(P1, . . . ,Pn,Q)-preserving/disjoint.

Proposition (Rajabov – S.)

If a type Φ is α-partially (P1, . . . ,Pn,Q)-(non-)preserving, where
α ∈ {∀,∃}, then any conjunction of formulae in a type Φ is
α-partially (P1, . . . ,Pn,Q)-(non-)preserving.
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Proposition (Rajabov – S.)

If properties P1, . . . ,Pn,Q are type-definable in a saturated
structure then a type Φ is partially (P1, . . . ,Pn,Q)-preserving
/disjoint iff some conjunction of formulae in Φ is
totally/existentially/partially (P1, . . . ,Pn,Q)-preserving/disjoint.

Proposition (Monotony)

If (P1, . . . ,Pn,Q) is Φ-preserved, P1 ⊇ P ′1, . . . ,Pn ⊇ P ′n, Q ⊆ Q ′,
Φ ⊆ Φ′ then (P ′1, . . . ,P

′
n,Q

′) is Φ′-preserved.
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Notation
For types Φ and Ψ we denote by Φ ∨Ψ the type
{ϕ ∨ ψ | ϕ ∈ Φ, ψ ∈ Ψ}, and by Φ ∧Ψ the type Φ ∪Ψ, if it is
consistent.

Proposition (Union)

If (P1, . . . ,Pn,Q) is Φ-preserved and (P1, . . . ,Pn,Q ′) is
Ψ-preserved, with Q,Q ′ ⊆ Mm, then Φ ∨Ψ is
(P1, . . . ,Pn,Q ∪ Q ′)-preserving and Φ ∧Ψ, if it is consistent, is
(P1, . . . ,Pn,Q ∩ Q ′)-preserving.

Corollary (Rajabov – S.)

If there is a (P1, . . . ,Pn,Q)-preserving type Φ then the set
ZΦ(P1, . . . ,Pn,Q) of all (P1, . . . ,Pn,Q)-preserving types, which
are contained in Φ, forms a distributive lattice 〈ZΦ(P1, . . . ,
Pn,Q);∨,∧〉 with the least element Φ.
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Traces of types

Definition. Let Φ = Φ(x1, . . . , xn, y) be a type with consistent
Φ(a1, . . . , an, y), where a1, . . . , an be tuples in a modelM of a
given theory T . A trace of Φ with respect to (a1, . . . , an), or a
Φ-trace, is a family {Qi ⊆ M l(y) | i ∈ I} such that
Φ(a1, . . . , an,M) ⊆

⋃
i∈I

Qi and Φ is (∀-) ∃-partially

({a1}, . . . , {an},Qi )-preserving for each i ∈ I .
If the sets Qi are pairwise disjoint then the Φ-trace {Qi | i ∈ I} is
disjoint, too.
The Φ-trace {Qi | i ∈ I} is called A-(type-)definable if each Qi is a
(type-)definable set, which are defined over A. We say on the
(type-)definability of the trace is it is A-(type-)definable for some A.
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Traces of types

Any type Φ(x1, . . . , xn, y) has a type-definable trace
{Φ(a1, . . . , an,M)} over the set ∪a1 ∪ . . . ∪ ∪an, which is a
singleton. Similarly each type Θ(y) with Φ(a1, . . . , an,M) ` Θ(y)
produce a singleton-trace {Θ(M)} for Φ. By the definition all
these traces are disjoint.
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Proposition

For any type Ψ = Φ(a1, . . . , an, y) the family [Ψ] is a disjoint
∅-type-definable Φ-trace. It is definable iff each type p(y) for [Ψ] is
isolated.

Corollary

If the modelM is atomic then each Φ-trace [Ψ] is definable.

Corollary

If the modelM is saturated then each Φ-trace [Ψ] is definable iff
Th(M) is ω-categorical.
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Theorem
For any types Φi = Φi (x1, . . . , xn, y i ), i = 1, . . . ,m,
Ψ = Ψ(y1, . . . , yn, z) and tuples a1, . . . , an for x1, . . . , xn,
respectively, the trace [S(Φ1, . . . ,Φm,Ψ)(a1, . . . , an, z)], for a
saturated structureM, consists of all types p(z) ∈ S l(z)(∅)
consistent with Ψ(b1, . . . , bm, z), where
tp(bi ) ∈ [Φi (a1, . . . , an, y i )], i = 1, . . . ,m.
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Preservations of properties by special formulae and types

Proposition (Rajabov – S.)

If ϕ is an atomic formula f (x1, . . . , xn) ≈ y then a tuple (P1, . . . ,
Pn,Q) = (P, . . . ,P,P) with ∅ 6= P ⊆ M is ϕ-preserved, i.e.
ϕ-idempotent, iff P is the universe of a subalgebra of a restriction
ofM till the signature symbol f .

Corollary (Rajabov – S.)

If Φ is the family of all atomic formula f (x1, . . . , xn) ≈ y for any
functional signature symbol f of a structureM then a tuple
(P1, . . . , Pn,Q) = (P, . . . ,P,P) with ∅ 6= P ⊆ M is Φ-preserved,
i.e. Φ-idempotent, iff P is the universe of a substructure ofM.
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Proposition (Rajabov – S.)

If ϕ(x1
1 , x

2
1 ; . . . ; x1

n , x
2
n ; y1, y2) is a formula

E (y1, y2) ∧ f (x1
1 , . . . , x

1
n ) ≈ y1 ∧ f (x2

1 , . . . , x
2
n ) ≈ y2

then a tuple (P1, . . . ,Pn, Q) = (E , . . . ,E ,E ) with an equivalence
relation E ⊆ M2 is ϕ-preserved, i.e. ϕ-idempotent, iff E is a
congruence relation of a restriction ofM till the signature symbol
f .
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Constructions of models of theories on a base of
preservations of properties

Theorem
For any expansionM of a modelM0 of a theory T0 by naming
each elements by infinitely many constants, with T = Th(M), the
following conditions are equivalent:
(1) M satisfies the preserving condition: : a Σ(T0)-formula
ϕ(x1, . . . , xn, x) is (∀-) ∃-partially ({[c1]}, . . . , {[cn]},M)-preserving
whenever ∃xϕ(c1, . . . , cn, x) ∈ T ;
(2) M � Σ(T0) satisfies the preserving condition;
(3) M is a canonical model of a completion of T0.
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Preservations of properties and Tarski-Vaught test

Theorem
Let N be a substructure of a structureM in a signature Σ. Then
the following conditions are equivalent:
(1) N is an elementary substructure ofM;
(2) for any formula ϕ(x1, . . . , xn, y) of the signature Σ and any
elements a1, . . . , an ∈ N ifM |= ∃y ϕ(a1, . . . , an, y) then
ϕ(x1, . . . , xn, y) is (∀-) ∃-partially ({a1}, . . . , {an},N)-preserving;
(3) for any formula ϕ(x1, . . . , xn, y) of the signature Σ and any
elements a1, . . . , an ∈ N either ϕ(x1, . . . , xn, y) is (∀-) ∃-partially
({a1}, . . . , {an},M)-disjoint or ϕ(x1, . . . , xn, y) is (∀-) ∃-partially
({a1}, . . . , {an},N)-preserving;
(4) for any finite type Φ(x1, . . . , xn, y) of the signature Σ and any
elements a1, . . . , an ∈ N either Φ(x1, . . . , xn, y) is (∀-) ∃-partially
({a1}, . . . , {an},M)-disjoint or Φ(x1, . . . , xn, y) is (∀-) ∃-partially
({a1}, . . . , {an},N)-preserving.
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Multipartite and related graphs with preservation properties

Definition. For a cardinality κ, a κ-partite graph is a graph whose
vertices are (or can be) partitioned into κ disjoint independent sets,
i.e. sets without arcs connecting elements inside these sets.
Equivalently, it is a graph that can be colored with κ colors, so that
no two endpoints of an arc have the same color. When κ = 2 these
are the bipartite graphs, when κ = 3 they are called the tripartite
graphs, etc.

Proposition

Let Γ = 〈M;R〉 be a graph. The following conditions are equivalent:
(1) Γ is κ-partite;
(2) M is divided into disjoint parts Pi , i < κ, such that the formula
R(x , y) is (Pi ,Pi )-preserving for any i < κ.
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Corollary

Let Γ = 〈M;R〉 be a graph. The following conditions are equivalent:
(1) Γ is bipartite;
(2) there is P ⊆ M such that the formula R(x , y) is
(P,P)-preserving and (P,P)-preserving.

Corollary

Let Γ = 〈M;R〉 be a graph. The following conditions are equivalent:
(1) Γ is tripartite;
(2) there are disjoint P0,P1,P2 ⊆ M such that M = P0 ∪ P1 ∪ P2
and the formula R(x , y) is (Pi ,Pi )-preserving for each i < 3.

Proposition

Let Γ = 〈M;R〉 be a graph. The following conditions are equivalent:
(1) R = ∅ (respectively, R = M2);
(2) the formula R(x , y) (¬R(x , y)) is (M, ∅)-preserving;
(3) the formula R(x , y) (¬R(x , y)) is (M,M)-disjoint.
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Using the assertions above one can describe series of type-definable
structures, in particular, classes of (ordered) semigroups, groups,
rings and fields, including spherically ordered ones, rectangular
bands of groups, graded algebras, etc., their subalgebras and
quotients.
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Definition

Below we consider regular structures, i.e. relational structures
without repetitions of interpretations of signature symbols. LetM
be a regular structure,M be a maximal regular expansion ofM
preserving the universe M. We denote by B(M) the set of all
restrictions ofM preserving the universe M. The set-theoretic
operations on the Boolean P(Σ(M)), forming its Cantor algebra,
induce the regular atomic Boolean algebra B(M) on B(M), with
the greatest elementM, the least elementM0 with the empty
signature, and |Σ(M)| atoms each of which has exactly one
signature symbol. Here unions N1 ∪N2 and intersections N1 ∩N2,
for N1,N2 ∈ B(M), preserve the universe M and consists of
unions of their signature relations, common signature symbols,
respectively. The unions can be considered both as combinations
and fusions, in a broad sense, of structures.
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Definition

Recall that for a lattice L and its element a the upper cone,
denoted by O(a) and Oa, consists of all elements b in L with a ≤ b,
and the lower cone, denoted by 4(a) and 4a, consists of all
elements b in L with b ≤ a.
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Theorem
The family Pω-cat ⊆ B(M) of countably categorical structures is
represented as the union of lower cones of all their elements and all
these elements are not maximal. This family is closed under
permutations and not closed under unions.

Theorem
Any Boolean algebra B(M) with a countable universe M contains
structures with the property PEhr of Ehrenfeuchtness (i.e. the
property of all structures whose elementary theories have finitely
many and at least three countable models), without the least and
the greatest elements of B(M). This property is closed under
permutations and can fail under restrictions and expansions. There
are infinite chains alternating the Ehrenfeuchtness and the
complement of this property. There are atomic structures
N ∈ B(M) belonging to PEhr.
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Recall that a structure N is called strongly minimal if for any
N ′ ≡ N and any formula ϕ(x , a) in the language of N with
parameters a ∈ N ′ the set ϕ(N ′, a) = {b | N ′ |= ϕ(b, a)} is either
finite or cofinite in N. A theory T is called strongly minimal if
T = Th(N ) for a strongly minimal structure N .

Theorem
Any Boolean algebra B(M) with an infinite universe M contains a
distributive sublattice Bsm(M) of all strongly minimal structures
N ∈ B(M). This sublattice closed under permutations and forms a
Boolean algebra with the least element N0 and the greatest
element SM forming 4(SM) which is equal to Bsm(M).
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Theorem
Any Boolean algebra B(M) with an infinite universe M contains
structures with the property Pω1-cat of ω1-categoricity, including
the least element of B(M). This property is closed under
permutations and can fail under restrictions and expansions. There
are infinite chains alternating the ω1-categoricity and the
complement of this property. There are structures N ∈ B(M) of
finite signatures with ON ∩ Pω1-cat = ∅.
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Definition

Recall that a formula ϕ(x , y) of a theory T is called stable if there
are no tuples ai , bi ∈ N, where i ∈ ω, N |= T , such that
N |= ϕ(ai , bj)⇔ i ≤ j . The theory T is called stable if all its
formulae are stable. Models of a stable theory are called stable, too.
Is a formula/theory/structure is not stable, it is called unstable or
having the order property.
It is said that a formula ϕ(x , y) has the strict order property if there
are parameters ai ∈ N, i ∈ ω, such that the sets ϕ(ai ,N ), i ∈ ω,
form a strictly descending chain with ϕ(ai ,N ) % ϕ(ai+1,N ), i ∈ ω.
It is said that an unstable formula ϕ(x , y) has the independence
property if in every/some model N of T there is, for each n ∈ ω, a
family of tuples ai , i ∈ n, such that for each of the 2n subsets X of
n there is a tuple b ∈ N for which N |= ϕ(ai , b)⇔ i ∈ X .
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Theorem
The family Pst ⊆ B(M) of stable structures is represented as the
union of lower cones of all its elements. This family is closed under
permutations and not closed under unions, and these unions can
produce both the strict order property and the independence
property.
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Definition

For a set A in a structure N , N is called semantically A-rigid or
automorphically A-rigid if any A-automorphism f ∈ Aut(N ) is
identical. The structure N is called syntactically A-rigid if
N = dcl(A).
A structure N is called ∀-semantically / ∀-syntactically n-rigid
(respectively, ∃-semantically / ∃-syntactically n-rigid), for n ∈ ω, if
N is semantically / syntactically A-rigid for any (some) A ⊆ N
with |A| = n.
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Definition

The least n such that N is Q-semantically / Q-syntactically
n-rigid, where Q ∈ {∀,∃}, is called the Q-semantical /
Q-syntactical degree of rigidity, it is denoted by degQ-sem

rig (N ) and

degQ-synt
rig (N ), respectively. Here if a set A produces the value of

Q-semantical / Q-syntactical degree then we say that A witnesses
that degree. If such n does not exists we put degQ-sem

rig (N ) =∞
and degQ-synt

rig (N ) =∞, respectively.

deg4(M)

(
deg∃-semrig (M), deg∃-synt

rig (M), deg∀-semrig (M), deg∀-synt
rig (M)

)
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Proposition

For any structures N1,N2 ∈ B(M) and A ⊆ M if N1 ∈ O(N2), i.e.
N1 is an expansion of N2, then
Aut(〈N1, ca〉a∈A) 6 Aut(〈N2, ca〉a∈A) and dclN1(A) ⊇ dclN2(A).

Corollary

For any structures N1,N2 ∈ B(M), A ⊆ M, Q ∈ {∀, ∃} if
N1 ∈ O(N2) then degQ-sem

rig (N1) ≤ degQ-sem
rig (N2) and

degQ-synt
rig (N1) ≤ degQ-synt

rig (N2). In particular, if N2 is semantically
/ syntactically A-rigid then N1 is semantically / syntactically
A-rigid, too.
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Let Psemr ⊆ B(M), Psyntr ⊆ B(M) be the properties of semantic
/ syntactic ∅-rigidity, respectively.

Proposition
For any structureM, Psemr = Psyntr iff M is finite.
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Theorem (Kulpeshov – S.)

The family Psemr ⊆ B(M) of semantically rigid structures,
respectively, the family Psynt ⊆ B(M) of syntactically rigid
structures, is represented as the union of upper cones of all its
elements. Each of these families is closed under permutations,
contains some atomic elements of B(M), and closed under
intersections iff |M| = 1.
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Below we consider concatenationsM1 +M2 of linearly ordered
setsM1 andM2. Since in the Boolean algebra B(M) all
structures have the same universe M, when consideringM1 +M2
we assume that the original structuresMi on the set M have
partial orders in which one connected component gave a linear
order forMi , and all other components are singletons and there
|M3−i | many of them, i = 1, 2. After connectingM1 andM2,
considered as a union, two connected components are formed with
respect to the relation ≤1 ∪ ≤2 of orders ≤1 and ≤2 inM1 and
M2, respectively. This relation is then replaced by its extension to
the desired linear order forM1 +M2.
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Proposition (Kulpeshov – S.)

LetM1 = 〈M1, <〉 be a linear ordering with
deg4(M1) = (∞,∞,∞,∞). Then
deg4(M1 +M2) = (∞,∞,∞,∞) for any linear ordering
M2 = 〈M2, <〉.

Proposition (Kulpeshov – S.)

For any infinite linear orderingsM1 = 〈M1, <〉 andM2 = 〈M2, <〉
with deg4(M1) = deg4(M2) = (0, 0, 0, 0) the following holds:
deg4(M1 +M2) equals (0, 0, 0, 0), (1, 1,m,m) for some natural
m ≥ 1 or (1, 1,∞,∞).

Proposition (Kulpeshov – S.)

For any natural m1,m2 ≥ 1 and for any infinite linear orderings
M1 = 〈M1, <〉,M2 = 〈M2, <〉 with deg4(M1) = (m1,m1,∞,∞)
and deg4(M2) = (m2,m2,∞,∞) the following holds:
deg4(M1 +M2) = (m,m,∞,∞), where
m1 + m2 ≤ m ≤ m1 + m2 + 1.
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