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CSA Groups

A subgroup H in group G is called malnormal iff for all x ∈ G \ H, we
have H ∩ Hx = 1.

A group G is called CSA (conjugate separable abelian), if every maximal
abelian subgroup of G is malnormal.
The class of CSA groups is quite wide, for example

1 every fully residually free group,

2 every ultra-power of a CSA,

3 free product of two CSA groups without involutions.

They have very serious roles in the study of residually free groups,
universal theory of non-abelian free groups, limit groups, exponential
groups and equational domains in algebraic geometry over groups.
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CT groups

A group is CT if commutativity is a transitive relation on the set of its
non-identity elements.

Despite this simple definition, the class of CT groups has also a crucial
role in the study of residually free groups and so it has a close connection
with CSA groups.
Every CSA group is CT but the converse is not true. In the presence of
residual freeness, both properties are equivalent, a theorem which has been
proved by B. Baumslag:

Residually free groups. Proc. London Math. Soc. 17(3), 1967.
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Relations between two classes

1 Every CSA is CT.

2 If G is CT, then Fine et al proved that G is not CSA iff G contains a
non-abelian subgroup G0 which contains a nontrivial abelian subgroup
H that is normal in G0.

3 For K a field, the group PSL2(K ) is never CSA but is CT if
char(K ) = 2 or char(K ) = 0 and −1 is not the sum of two squares.

Benjamin Fine et al: On CT and CSA groups and related ideas. J. Group
Theory, 2016, 19.
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More properties

1 CSA and CT are universal first order properties, and hence these
classes are inductive and subgroup-closed.

2 If a non-abelian group G is residually free, then the following are
equivalent:

G is fully residually free.
G is CT.
G is CSA.
G is universally free.
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Generalization

It seems that the idea of CT and CSA groups is a small part of a very
general concept.

The general theory is described in

M. Shahryari: On conjugate separability of nilpotent groups. J. Group
Theory, 2024, 23.

Suppose X is a variety of groups. A group G can be called XT then, iff for
any two X-subgroups K1,K2 ≤ G the assumption K1 ∩K2 6= 1 implies that
〈K1,K2〉 is also an X-group.
Similarly, we call a group G a CSX group if all of its maximal X-subgroups
are malnormal.
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Example: NTk and CSNk groups

We call a group NTk (nilpotency transitive of class k) if for any two
Nk -subgroups K1 and K2, the assumption K1 ∩ K2 6= 1 implies that
〈K1,K2〉 is nilpotent of class at most k .

Also a group G is CSNk (conjugately separated nilpotent of class k) if and
only if every maximal Nk -subgroup of G is malnormal.
The case k = 1 obviously coincides with the ordinary CT and CSA
groups. It is also easy to see that the property CSA implies CSNk .
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Basic properties

1 Every CSNk group is NTk .

2 Both classes are closed under taking subgroups.

3 Both classes can be axiomatize by universal first order sentences.

4 Both classes are closed under taking ultra-products.

5 Suppose A and B are NTk . Then the free product G = A ∗ B is also
CSNk .

6 Suppose A and B are CSNk groups without elements of order 2.
Then the free product G = A ∗ B is also CSNk .

7 Every finite CSNk group is nilpotent of class at most k.
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Finite CSA groups

Finite CT groups are already classified (by Suzuki 1957 and Yu-Fen Wu
1998).

It is well-known that every finite CSA group is abelian. The known proofs
usually employ representation theory of finite groups or classification of
finite simple groups. We present an elementary proof for this fact, and
then the main idea of this elementary proof will be applied for a wide class
of CSX groups.
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Finite CSX groups in general

Before presenting our elementary proof, we need to emphasis on the fact:

Theorem

Let X be a class of groups which contains all cyclic groups. Then every
finite CSX group belongs to X.

Proof. The proof of this general fact is not elementary.

In fact we use a
known result on finite Frobenius groups which says that the Frobenius
kernel is unique and every two Frobenius complements are conjugate. Let
G be a finite CSX group but not an element of X. Let A be a maximal X
subgroup of G . Then A is a Frobenius complement and hence every other
Frobenius complement is a conjugate of A. Now let g ∈ G be an arbitrary
element. Then 〈g〉 ⊆ B for some maximal X-subgroup B. But B = Ax for
some x , so

G =
⋃
x

Ax .

This shows that A = G , a contradiction.
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The proof for the case of finite CSA

But for some varieties X there is an elementary proof for the previous
theorem:

for example, if X is the variety of abelian groups, i.e. the case of
CSA groups.

Theorem

Every finite CSA group is abelian.

Proof. In order to give an elementary proof of this statement, we need the
following basic facts about CSA groups:
1- Every CSA group is CT.
2- G is CSA iff for all non-identity x ∈ G , the centralizer CG (x) is a
maximal abelian malnormal subgroup.
3- If G is CSA, then every maximal abelian subgroup of G has the form
CG (x) for some non-identity x .
4- If G is CSA then A ∩ B = 1 for all distinct maximal abelian subgroups
A and B.
5- If A is a malnormal subgroup, then NG (A) = A.
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The proof ...

Now, suppose G is a finite CSA group but not abelian. Let A1 be a
maximal abelian subgroup, with distinct conjugates

A
x1,1
1 ,A

x1,2
1 ,A

x1,3
1 , . . .

Then all of these subgroups are maximal abelian and so their intersection
is 1.

Suppose

G 6=
⋃
j

A
x1,j
1 .

Then there is another maximal abelian subgroup A2, such that
A2 ∩ A

x1,j
1 = 1, for all j .
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The proof ...

Let
A
x2,1
2 ,A

x2,2
2 ,A

x2,3
2 , . . .

be the set of all distinct conjugates of A2.

It is easy to see that all
subgroups A

x1,j
1 and A

x2,r
2 have pairwise trivial intersection.

Hence the union
(
⋃
j

A
x1,j
1 \ 1) ∪ (

⋃
r

A
x2,r
2 \ 1)

is disjoint.
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The proof ...

Continue this way! At the end there will be a number n, maximal abelian
subgroups

A1,A2, . . . ,An,

and elements xij (1 ≤ i ≤ n, 1 ≤ j ≤ ki ), such that the union

G \ 1 =
n⋃

i=1

ki⋃
j=1

(A
xij
i \ 1)

is disjoint.
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The proof ...

Hence, we have

|G | =
n∑

i=1

[G : NG (Ai )](|Ai | − 1) + 1

=
n∑

i=1

[G : Ai ](|Ai | − 1) + 1

= n|G | −
n∑

i=1

[G : Ai ] + 1.

Therefore, we have

n∑
i=1

[G : Ai ] = (n − 1)|G |+ 1.
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The proof ...

Now, we know that each Ai = CG (ai ), for some ai ∈ Ai .

Hence

[G : Ai ] = |ClG (ai )|,

and consequently

n∑
i=1

|ClG (ai )| = (n − 1)|G |+ 1.

Note that if i 6= j , then ai is not conjugate to aj (otherwise Ai ∩ Aj 6= 1).
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The proof ...

Now, using the class equation, we have

|G | = |Z (G )|+
n∑

i=1

|ClG (ai )|+ · · · = 1 +
n∑

i=1

|ClG (ai )|+ · · ·

Therefore
n∑

i=1

|ClG (ai )| ≤ |G | − 1,

and hence
(n − 1)|G |+ 1 ≤ |G | − 1

which implies that n = 1.
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The proof ...

So G =
⋃

j A
x1,j
1 , and hence G = A1. This completes the proof.

Note. With some modifications, we can use the same proof for more
general cases. For example, we can show by the same argument:

Theorem

Every finite CSNk group is nilpotent of class k .
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More varieties admitting the same elementary proof

The same idea can be used to the following case:

Theorem

Let X be a variety which contains all abelian groups and suppose
CSX ⊆ XT. Then every finite CSX group belongs to X.

There are many examples of such varieties:
Example. Let X = Yq ∩Bn, such that

Yq = {G : Gq ⊆ Z (G )}

and Bn is the Burnside variety. Let gcd(n, q) = 1. Then X satisfies the
requirements of the above theorem.
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Thank you.
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