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1 Preliminaries

We study automorphisms of the integral group rings of finite groups
with the use of representation theory. If 71 (G), - - - , T5(G) are all irreducible
nonequivalent representations of G then consider the representation

D(G) = {diag(T1(g), T2(9), ---. Ts(9)), g € G}.

Obviously, ZG = Z[D(G)]. If x; is the character of the representation T;(G),
Q(x;) is the field of x;, 7 € Aut(Q(x;)), 7" is an extension of 7 to an
automorphism of the field of 7;(G) then, on the algebra Q[7;(G)], one can
define an authomorphism 7/ by the rule 7/((a;;)) = (a[;)

In the article [1], the authors obtained a factorization of automorphisms
of the integral group rings of finite groups by considering the ring Z[D(G)].
In particular, we introduced the notion of a stabilizing automorphism, which
is the composition 7 o s, Where ¢ is the conjugation by some unit s
of the algebra Q[D(G)]. The natural question arises whether for every 7 €
Aut(Q(y;)) there is a matrix s such that the composition 7/ o ¢, is an
automorphism of the ring Z[D(G)].

Pass from the ring Z[D(G)] to the isomorphic ring Z[R(G)"], where R(G)
is the right regular representation of the finite group G = {e, g2, -+ , 9, } and
the matrix ¢t € GL,(C) is such that the matrices (R(G))" have cell-diagonal
form in which each regular representation T;(G) occurs exactly n; times,
where n; is the degree of this representation.

Our nearest aim is to formulate conditions under which such s exists.

Observe first of all that a necessary condition for the existence of such s
is the coincidence of the Q-algebras Q[R(G)!] and Q[(R(G)!)™].

Agree to refer to the rings Z[T;(G)] as cells of the ring Z[D(G)].
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Between different cells of Z[D(G)], we have the mappings

Hij - ZagTi(g) — ZO‘QTJ‘(g)aO‘g €Z,

geG geqG

which are isomorphisms or not.

Concerning the family of those cells Z[T;(G)],i = 1, ..., s, between which
the mappings p;; are isomorphisms, we say that they constitute a block. If
for a cell Z[T;(G)] none of the mappings 4;; is an isomorphism then the cell
constitutes a block. If for a mapping Z[T;(G)] there are cells Z[T;(G)] such
that p,; are isomorphisms, we may assume without loss of generality that
these cells are Z[T;11(G)],....Z[T;1 -1 (G)]. Put

Dy(G) = {diag(Ti(g), ..., Ti+k-1(9)), g € G}.

Refer to the ring O; = Z[D,(G)] as a block. In such notations,

D(g) = diag(D1(g), ..., Di(g))-

Lemma 1. Suppose that cells Z|T;(G)], Z[T;11(G)], ..., Z|Ti1p-1(G)], k> 1,
with the respective characters x;, ..., Xizk—1 constitute a block O. Then the
degrees of the representations T;(G), ..., Tiix_1(G) coincide, k=|Aut(Q(x;))|,
and the representation Ty, ;(G) is equivalent to the representation 7' (T;(G)),
where 7 € Auwt(Q(T;(Q))) is an extension of some automorphism T €

Aut(Q(x;)) depending on j, j =0,....k — 1.

Jloxasameavcmeo. All the cells Z[Ti(G)], Z[Ti41(G)), ..., Z[Tiyx-1(G)] in
the block O are isomorphic between each other.
In each cell Z[T3(G)],j =1i,...,i+k— 1, consider the subring generated
by the class sums
19615 (90)
Z Ti(g9) = Ten,-,
9€9§ !
where g is the conjugacy class of an element g, € G. Obviously, the
mappings 1;; define isomorphisms between the corresponding subrings. The
quotient fields of these subrings are isomorphic, and each of them is isomorphic
to its corresponding character field Q(x;); therefore, the character fields are
also isomorphic. Thus, every cell isomorphism induced by the mapping p;; is
extendable to an isomorphism of the corresponding fields Q(x;) and Q(x;).
Further, this isomorphism can be extended to some automorphism of a finite
algebraic extension K = Q(w;) containing the fields under consideration
([3]). The automorphisms of the represnetation field K of G take each
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character field Q(x;) € K into itself, which yields the equalities Q(x;) =
-+« = Q(Xitk—1). Consequently, the mappings p;;,7 =i+ 1,...,i+k—1,
induce automorphisms of the character field Q(x;).

Let 7;; € Aut(Q(x;)) be the automorphism induced by p;;, then

1961 (xi(90))™ (196 Ixi(90) \ ™ _ 196" Ixi(90)
Tn; n; n;

Consequently, the image of the irreducible character y;” = —y;. Since
n.

all irreducible characters are linearly independent over C, we have n; = n;.
Obviously, to disctinct mappings f1;; there correspond different automorphisms
7,5 € Aut(Q(x;)); therefore, & < [Aut(Q(x;))|-

On the other hand, automorphisms of the field Q(x;) extend to auto-
morphisms of the field Q(7;(G)) and then to automorphisms of the field
K (see [2]). Any automorphism of the representation field of G maps an
irreducible character to an irreducible character ([3]). This gives that any
automorphism of the field Q(x;) takes x; to some irreducible character ;. If
we extend this automorphism to an automorphism of the field Q(7;(G)) and
apply it to the entries of the matrix T;(G) then, up to equivalence, we obtain
the representation 7;(G) due to the coincidence of the characters. Obviously,
the mapping f;; induced by an automorphism of the field Q(7;(G)) and
the conjugation by a matrix from GL,,(C) defines an isomorphism. Thus,
the cell Z[T;(G)] gets into the block O and k > [Aut(Q(x;))|-

The above arguments imply that if Aut(Q(x;)) = {n = id, 7, ..., 7}
then k£ = r and the representation 7;, ;(G) is equivalent to the representation
7 (TH(G)), =0, ...,r—1, 7/, is an extension of 75,1 up to an automorphism

of the field Q(7;(G)). Thus, the lemma is proved. O

2 Description of the algorithm and the main
theorem

Lemma 1 implies that each block contains k;n? linearly independent
matrices and a matrix in a block is uniquely defined by its first cell. Therefore,
if the Schur index (see [2|) is equal to 1 then from an additive basis of the
block one can “compose” any matrix in the algebra (Q(x;))n,, which implies
the coincidence of the Q-algebras of the block under the action of 7. Hence,
in the particular case when all the representations 7;(G) have Schur index 1,
the necessary condition for the existence of a matrix s is fulfilled.
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If for some representations T;(G) the Schur index is greater than 1 then
the coincidence of the Q-algebras may fail. So, let 7/ be an automorphism
of the representation field of G.

For convenience of the exposition, enumerate the steps of our considerations.

1. Suppose the coincidence of the Q-algebras Q[R(G)!] and Q[(R(G)")™].

2. The coincidence of the Q-algebras implies that the elements ((R(g;))")™
are Q-linear combinations of the elements (R(g;))".

3. Item 2 implies that the elements ((R(G))!)™ in the Q-algebra of the left
regular representation of G have the form

L(gz) = %Rl(e) +o At %Rl(gn)mgz € sz = 17 e, n.
1 n

We obtain a representation L(G) of the group G in the algebra Q[R;(G)].

4. Observe that by Z" we mean the set of integral vectors of length n
written as a row or a column. It is always clear from the context which
of the cases is being considered. The same applies to the canonical basis
er=(1,0,...,0),....en = (0,0,...,1).

Consider the algebra Q[R;(G)]. The first columns of the matrices R,(e),
..., Ri(gn) constitute the canonical basis of Z", and each matrix R;(g;) is
uniquely determined by its first column. Namely, the first column of this
matrix is the vector e; of the canonical basis of Z", the second column
equals R(gs)e;, where R(G) is the right regular representation of G, etc.
Thus, R;(g:) = (e; R(g2)e; -+ R(gn)e;). It is now clear that if a = uy Ry(e) +
st un Ry(gn), w = (u,. .., up) then a = (ul R(g)u” ... R(gn)ul).

5.1fa=ai1Ri(e)+---+a,Ri(g9,) € QRI(G)]NM,(Z) then item 4 implies
that a € Z[R)(G)].

6. By Burnside’s theorem (see [4, p. 68]), for the group L(G) there
exists a matrix s € GL,(Q) such that (L(G))* C GL,(Z). In our case,
the positive answer to the above-posed question means that that there is
a unit s; of the algebra Q[R;(G)] such that (L(G))* C GL,(Z). Obviously,
the existence of s; implies the existence of s.

7. Following the idea of the proof of Burnside’s theorem, we must find
a submodule N in Z" invariant under L(G) and such that the transition
matrix from the basis of NV to the canonical basis of Z™ be from Q[R,;(G)].
Then the matrices of Z[L(G)] conjugated by such a transition matrix remain
in Q[R;(G)] and become integral, i.e., the ring Z[L(G)] under such conjugation
gets into the ring Z[R;(G)], which implies the existence of the matrix s; and
hence of the matrix s. We will consider right modules. Then the coordinated
of the basis of N in the canonical basis of Z" are the rows of the transition
matrix. If we recall that transposition is an anti-isomorphism of the algebra
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Q[R/(G)] and (R(g;))" = R(g;') then the transition matrix must have
the form

uR(g;")

or, equivalently, N must have the basis u,uR(g;"'), - ,uR(g; "), i.e., N =
uZ|R(Q)]. |
8. Invariance of N under L(G). Put p; = (Z—zl, e ,Z—?). Then, by item 4,
1 n

L(g:) = (0] R(g2)pi -+ R(gn)py ),
uL(g;) = (up; ,uR(g2)p; .- -+ ,uR(gn)p} ) =

= (pdT, ..., piR(g;H)uT) = pi(u” - R(g;HuT) = piS(u),

where S(u) = (u”--- R(g;")ul).
The invariance of N under L(G) implies that

b1
piS(u) = (z,--+,2)S(u). Consider the matrix L' = : | . The last
Pn
equality implies that
L'S(u) = AS(u), where A € M,(Z) (%)

The automorphism 7/, defined on the algebra Q[(R(G))], induces an auto-
morphism o : R)(G) — L(G) on the algebra Q[R;(G)]. L’ is the matrix of
o in the basis R;(e), -, R;(g,) of the algebra Q[R;(G)], which implies that
|L’| = £1 since o has finite order. Then condition (*) gives |A| = £1 because
1S(u)| = +[S(u)|. Since uL(g;) = p;S(u), the rows of the matrix L'S(u) are
the coordinates of the basis of the module uZ[L(G)]. Therefore, condition (*)
for |[A] = 41 means that the modules wZ[L(G)] and uZ[R(G)] coincide.
Thus, condition (x) determines the invariance of the module N = uZ[R(G)]
under L(G) since the module uZ[L(G)] is obviously invariant under L(G).

9. We infer that the existence of the matrix s is equivalent to the existence
of a vector u = (uq, ..., u,) € Z" satisfying the following conditions:

(1) ul(g;) € 2,0 =1,...,n;

(2) the matrix s; = w1 Ry(e) + - - - + u, Ri(gn) is invertible;

(3) condition (x) is fulfilled.



Theorem 1. If Q[(R(G))!] = Q[((R(G)))™] then, given 7 € AutQ(x;),
there exists a unit s of the algebra Q[(R(G))!] such that the composition
70, is an automorphism of the ring Z[(R(G))"] if and only if the following
conditions hold: there exists a vector u = (uy, ...,u,) € Z" such that

(1) uL(g;) € Z",i = 1,...,n;

(2) the matriz s; = w1 Ry(e) + - - - + u, Ry (gn) is invertible;

(3) L'S(u) = AS(u), where A € M,(Z).

Zoxasameavcmeo. Necessity. Suppose that s exists. Then the Q-algebras
coincide and there exists a unit s € Q[R;(G)] such that Z[L(G)]* = Z[R)(G)].
By item 4,

= (" R(ga)v" -+ R(ga)v"),

S/
where v = (2, ... E2)  Assume that
q1’ ’qn

g=1lecm.(q, - ,q), u=qu, g8 = (u" R(g2)u” --- R(gn)u"),

and we can take ¢s’ instead of s’. In this case, the vector u € Z" satisfies
conditions (1),(2),(3). Indeed, the vectors u, uR(gy '), - - - ,uR(g; ') are linearly
independent, i.e., (2) holds. In this basis, the matrices L(g;) are integral.
Then uL(g;) = z1u+ -+ + z,u(R(g, ') € Z", i.e., (1) is fulfilled. Moreover,
the module N with basis u,uR(g;'), - ,uR(g;") is invariant under L(G),
i.e., the matrices L(G) become integral, and this means the fulfillment of
condition (3).

Sufficiency. Note that conditions (1),(2),(3) coincide with conditions (1)-
(3) of item 9, which is equivalent to the existence of s. The theorem is
proved. O
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