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As usual, βX denotes the standard Čech–Stone compactification of the discrete space X, which we identify
with the set of ultrafilters over X (see [2, 6]). We consider here ultrafilters over ω although most of our results
remain true for ultrafilters over any infinite set X. The Rudin–Keisler preorder ≤RK on βω is defined by

letting u ≤RK v iff there exists f : ω → ω such that f̃(v) = u, where f̃ : βω → βω is the continuous extension
of f . The Comfort preorder ≤C on βω is defined by letting u ≤C v iff any v-compact space is u-compact, where

a space X is u-compact iff f̃(u) ∈ X for any f : ω → X. (See [2, 6] for more on ultrafilters and ≤RK, and [3, 4]
for ≤C.)

For u, v ∈ βω and any ordinal α, define: uR0 v iff u is principal, R<α =
⋃

β<αRβ, and uRα v iff there

exists a continuous map f : βω → βω such that f(v) = u and f(n)R<α v for all n < ω. The hierarchy is
non-degenerate and lies between ≤RK and ≤C as stated in the following theorem.

Theorem 1. R1 = ≤RK; R<α ⊂ Rα for all α < ω1; R<ω1 = Rω1 = ≤C.

If X,Y are spaces and α is an ordinal, f : Xα → Y is right-continuous w.r.t. A ⊆ X iff for all β < α the shift
x 7→ f(a0, a1, . . . , x, bβ+1, bβ+2, . . .) is continuous whenever a0, a1, . . . ∈ A and bβ+1, bβ+2, . . . ∈ X. As shown
in [8, 9], if n < ω, X is discrete, and Y is compact Hausdorff, then every f : Xn → Y uniquely extends to

f̃ : (βX)n → Y that is right-continuous w.r.t. X. This fact provides a canonical way to obtain, for an arbitrary
first-order model A, its ultrafilter extension βA ([8, 9]), generalizing the well-known construction of ultrafilter
extensions of semigroups comprehensively treated in [6]. (Some historical remarks can be found in [7].)

If n < ω, the relations Rn can be redefined in terms of ultrafilter extensions of n-ary operations on ω as

follows: uRn v iff there exists f : ωn → ω such that f̃(v, . . . , v) = u. Moreover, Rm ◦Rn = Rnm (so Rn are not
preorders for 2 ≤ n < ω). These observations can be expanded to all Rα by using ω-ary operations on ω. Such
an operation is identified with a continuous map of the Baire space ωω into the discrete space ω; these maps
admit a natural hierarchy ranked by countable ordinals.

Proposition 1. Any continuous f : ωω → ω uniquely extends to f̃ : (βω)ω → βω that is right-continuous
w.r.t. ω (in other words, ω-ary operations on ω extend to such operations on βω).

Proposition 2. Let α < ω1 and u, v ∈ βω. Then uRα v iff there exists a continuous f : ωω → ω of rank α

such that f̃(v, v, . . .) = u.

The composition of arbitrary R<α is expressed via a multiplication-like operation on ordinals. To simplify
notation, denote supγ<α(γ ·β) by (<α)·β; the explicit calculation of these ordinals, used in getting the following
result, is rather cumbersome.

Theorem 2. Let α, β < ω1.

(i) Rα ◦ Rβ = Rγ where γ = β · α if β = 0 or α < ω, γ = β · (α + 1) − 1 if 0 < β < ω and α ≥ ω, and
γ = β · (α+ 1) if α, β ≥ ω;

(ii) If α > 0 is limit, then R<α ◦Rβ = R<γ where γ = β · α;
(iii) If β > 0 is limit, then Rα ◦R<β = R<γ where γ = (<β) · α if α < ω, and γ = (<β) · (α+ 1) otherwise;
(iv) If α, β > 0 are limit, then R<α ◦R<β = R<γ where γ = (<β) · α.

Corollary 1. Let 2 ≤ α ≤ ω1. Then R<α is a preorder iff α is multiplicatively indecomposable.

Define preorders between ≤RK and ≤C by letting ≤0 = ≤RK and ≤1+α = R<ωωα for all α ≤ ω1. So, if α is
infinite, R<α = ≤α iff α is an epsilon number. Also ≤α ◦ ≤β = ≤γ where γ = max(α, β).

Let us now consider two applications in model theory. The first concerns ultrafilter extensions. As shown
in [5], for any ultrafilter v and semigroup S, the set {u : u ≤C v} forms a subsemigroup of βS. This can be
expanded to arbitrary first-order models and relations R<α as follows.
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Corollary 2. For all ordinals α > 1, ultrafilters v, and models A, the following are equivalent:

(i) {u : uR<α v} forms a submodel of the model βA;
(ii) α is additively indecomposable.

Consequently, for all α > 0, v, and A, {u : u ≤α v} forms a submodel of βA.

The second application concerns ultrapowers. For a model A with the universe A, a set I, an ultrafilter u
over I, and f : I → A, let fu denote the u-equivalence class of f , and

∏
uA the ultrapower of A by u. As

shown in [1], the Rudin–Keisler preorder has a natural characterization in terms of ultrapowers: u ≤RK v iff∏
uA ⪯

∏
vA for all models A, and also iff

∏
uN ⪯

∏
vN where N is the full model of ω, i.e., it has the universe

ω and all relations and operations on ω.
It is not difficult to characterize Rn with n < ω via ultrapowers in a similar manner:

Proposition 3. For all u, v, and n < ω, the following are equivalent:

(i) uRn v;
(ii)

∏
uA ⪯

∏
v . . .

∏
vA (n times) for all models A;

(iii)
∏

uN ⪯
∏

v . . .
∏

vN (n times).

To handle the case α ≥ ω, the following “skew version” of limit ultrapowers is used. First for any e : A → B
define eu :

∏
uA →

∏
uB by letting eu(gu) := (e ◦ g)u . Clearly, e : A ⪯ B implies eu :

∏
uA ⪯

∏
uB. Then for

every model A, ultrafilter u, and ordinals α, define the models Au,α and their embeddings eβα for β < α:

(i) Au,0 := A, Au,1 :=
∏

uA, and e01 = d (the diagonal map);
(ii) if α is limit, then Au,α := limβ→αAu,β w.r.t. the system {eγβ}γ<β<α , and the maps eβα (β < α) are

defined naturally;
(iii) if α = β + 1, then Au,α :=

∏
uAu,β, and the maps eδα (δ < α) are defined as follows:

(a) if β = γ + 1, then eβα := euγβ;

(b) if β > 0 is limit, then for any g ∈ Au,β

eβα(g) := euγβ(h)

for some γ < β and h ∈ g ∩Au,γ+1;
(c) for any δ < β, eδα := eβα ◦ eδβ .

Lemma 1. All Au,α are well defined, and if β < α then eβα : Au,β ⪯ Au,α .

Theorem 1. For u, v ∈ βω, and a limit ordinal α > 0, the following are equivalent:

(i) uR<α v;
(ii) there is β < α such that Au,1 ⪯ Av,β for all models A;
(iii) there is β < α such that Nu,1 ⪯ Nv,β.

Consequently, u ≤C v iff Au,1 ⪯ Av,ω1 for all models A, and also iff Nu,1 ⪯ Nv,ω1.
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