ON PREORDERS BETWEEN THE RUDIN-KEISLER AND COMFORT PREORDERS AND A MODEL-THEORETIC CHARACTERIZATION OF THE COMFORT PREORDER

NIKOLAI L. POLIAKOV AND DENIS I. SAVELIEV

As usual, βX denotes the standard Čech–Stone compactification of the discrete space X, which we identify with the set of ultrafilters over X (see [2, 6]). We consider here ultrafilters over ω although most of our results remain true for ultrafilters over any infinite set X. The *Rudin–Keisler* preorder $\leq_{\rm RK}$ on $\beta \omega$ is defined by letting $\mathfrak{u} \leq_{\rm RK} \mathfrak{v}$ iff there exists $f: \omega \to \omega$ such that $\tilde{f}(\mathfrak{v}) = \mathfrak{u}$, where $\tilde{f}: \beta \omega \to \beta \omega$ is the continuous extension of f. The *Comfort* preorder $\leq_{\rm C}$ on $\beta \omega$ is defined by letting $\mathfrak{u} \leq_{\rm C} \mathfrak{v}$ iff any \mathfrak{v} -compact space is \mathfrak{u} -compact, where a space X is \mathfrak{u} -compact iff $\tilde{f}(\mathfrak{u}) \in X$ for any $f: \omega \to X$. (See [2, 6] for more on ultrafilters and $\leq_{\rm RK}$, and [3, 4] for $\leq_{\rm C}$.)

For $\mathfrak{u}, \mathfrak{v} \in \boldsymbol{\beta}\omega$ and any ordinal α , define: $\mathfrak{u} R_0 \mathfrak{v}$ iff \mathfrak{u} is principal, $R_{<\alpha} = \bigcup_{\beta < \alpha} R_\beta$, and $\mathfrak{u} R_\alpha \mathfrak{v}$ iff there exists a continuous map $f : \boldsymbol{\beta}\omega \to \boldsymbol{\beta}\omega$ such that $f(\mathfrak{v}) = \mathfrak{u}$ and $f(n) R_{<\alpha} \mathfrak{v}$ for all $n < \omega$. The hierarchy is non-degenerate and lies between \leq_{RK} and \leq_{C} as stated in the following theorem.

Theorem 1. $R_1 = \leq_{\text{RK}}$; $R_{<\alpha} \subset R_\alpha$ for all $\alpha < \omega_1$; $R_{<\omega_1} = R_{\omega_1} = \leq_{\text{C}}$.

If X, Y are spaces and α is an ordinal, $f: X^{\alpha} \to Y$ is right-continuous w.r.t. $A \subseteq X$ iff for all $\beta < \alpha$ the shift $x \mapsto f(a_0, a_1, \ldots, x, b_{\beta+1}, b_{\beta+2}, \ldots)$ is continuous whenever $a_0, a_1, \ldots \in A$ and $b_{\beta+1}, b_{\beta+2}, \ldots \in X$. As shown in [8, 9], if $n < \omega$, X is discrete, and Y is compact Hausdorff, then every $f: X^n \to Y$ uniquely extends to $\tilde{f}: (\beta X)^n \to Y$ that is right-continuous w.r.t. X. This fact provides a canonical way to obtain, for an arbitrary first-order model \mathfrak{A} , its ultrafilter extension $\beta \mathfrak{A}$ ([8, 9]), generalizing the well-known construction of ultrafilter extensions of semigroups comprehensively treated in [6]. (Some historical remarks can be found in [7].)

If $n < \omega$, the relations R_n can be redefined in terms of ultrafilter extensions of *n*-ary operations on ω as follows: $\mathfrak{u} R_n \mathfrak{v}$ iff there exists $f: \omega^n \to \omega$ such that $\tilde{f}(\mathfrak{v}, \ldots, \mathfrak{v}) = \mathfrak{u}$. Moreover, $R_m \circ R_n = R_{nm}$ (so R_n are not preorders for $2 \leq n < \omega$). These observations can be expanded to all R_α by using ω -ary operations on ω . Such an operation is identified with a continuous map of the Baire space ω^{ω} into the discrete space ω ; these maps admit a natural hierarchy ranked by countable ordinals.

Proposition 1. Any continuous $f : \omega^{\omega} \to \omega$ uniquely extends to $\tilde{f} : (\beta \omega)^{\omega} \to \beta \omega$ that is right-continuous w.r.t. ω (in other words, ω -ary operations on ω extend to such operations on $\beta \omega$).

Proposition 2. Let $\alpha < \omega_1$ and $\mathfrak{u}, \mathfrak{v} \in \beta \omega$. Then $\mathfrak{u} R_\alpha \mathfrak{v}$ iff there exists a continuous $f : \omega^\omega \to \omega$ of rank α such that $\widetilde{f}(\mathfrak{v}, \mathfrak{v}, \ldots) = \mathfrak{u}$.

The composition of arbitrary $R_{<\alpha}$ is expressed via a multiplication-like operation on ordinals. To simplify notation, denote $\sup_{\gamma < \alpha} (\gamma \cdot \beta)$ by $(<\alpha) \cdot \beta$; the explicit calculation of these ordinals, used in getting the following result, is rather cumbersome.

Theorem 2. Let $\alpha, \beta < \omega_1$.

- (i) $R_{\alpha} \circ R_{\beta} = R_{\gamma}$ where $\gamma = \beta \cdot \alpha$ if $\beta = 0$ or $\alpha < \omega$, $\gamma = \beta \cdot (\alpha + 1) 1$ if $0 < \beta < \omega$ and $\alpha \ge \omega$, and $\gamma = \beta \cdot (\alpha + 1)$ if $\alpha, \beta \ge \omega$;
- (ii) If $\alpha > 0$ is limit, then $R_{\leq \alpha} \circ R_{\beta} = R_{\leq \gamma}$ where $\gamma = \beta \cdot \alpha$;
- (iii) If $\beta > 0$ is limit, then $R_{\alpha} \circ R_{<\beta} = R_{<\gamma}$ where $\gamma = (<\beta) \cdot \alpha$ if $\alpha < \omega$, and $\gamma = (<\beta) \cdot (\alpha + 1)$ otherwise;
- (iv) If $\alpha, \beta > 0$ are limit, then $R_{<\alpha} \circ R_{<\beta} = R_{<\gamma}$ where $\gamma = (<\beta) \cdot \alpha$.

Corollary 1. Let $2 \leq \alpha \leq \omega_1$. Then $R_{\leq \alpha}$ is a preorder iff α is multiplicatively indecomposable.

Define preorders between $\leq_{\rm RK}$ and $\leq_{\rm C}$ by letting $\leq_0 = \leq_{\rm RK}$ and $\leq_{1+\alpha} = R_{<\omega^{\omega^{\alpha}}}$ for all $\alpha \leq \omega_1$. So, if α is infinite, $R_{<\alpha} = \leq_{\alpha}$ iff α is an epsilon number. Also $\leq_{\alpha} \circ \leq_{\beta} = \leq_{\gamma}$ where $\gamma = \max(\alpha, \beta)$.

Let us now consider two applications in model theory. The first concerns ultrafilter extensions. As shown in [5], for any ultrafilter \mathfrak{v} and semigroup S, the set { $\mathfrak{u} : \mathfrak{u} \leq_{\mathcal{C}} \mathfrak{v}$ } forms a subsemigroup of βS . This can be expanded to arbitrary first-order models and relations $R_{\leq \alpha}$ as follows. **Corollary 2.** For all ordinals $\alpha > 1$, ultrafilters \mathfrak{v} , and models \mathfrak{A} , the following are equivalent:

- (i) $\{\mathfrak{u} : \mathfrak{u} R_{\leq \alpha} \mathfrak{v}\}$ forms a submodel of the model $\beta\mathfrak{A}$;
- (ii) α is additively indecomposable.

Consequently, for all $\alpha > 0$, \mathfrak{v} , and \mathfrak{A} , $\{\mathfrak{u} : \mathfrak{u} \leq_{\alpha} \mathfrak{v}\}$ forms a submodel of $\beta \mathfrak{A}$.

The second application concerns ultrapowers. For a model \mathfrak{A} with the universe A, a set I, an ultrafilter \mathfrak{u} over I, and $f: I \to A$, let $f_{\mathfrak{u}}$ denote the \mathfrak{u} -equivalence class of f, and $\prod_{\mathfrak{u}} \mathfrak{A}$ the ultrapower of \mathfrak{A} by \mathfrak{u} . As shown in [1], the Rudin–Keisler preorder has a natural characterization in terms of ultrapowers: $\mathfrak{u} \leq_{\mathrm{RK}} \mathfrak{v}$ iff $\prod_{\mathfrak{u}} \mathfrak{A} \preceq \prod_{\mathfrak{v}} \mathfrak{A}$ for all models \mathfrak{A} , and also iff $\prod_{\mathfrak{u}} \mathfrak{N} \preceq \prod_{\mathfrak{v}} \mathfrak{N}$ where \mathfrak{N} is the *full model of* ω , i.e., it has the universe ω and all relations and operations on ω .

It is not difficult to characterize R_n with $n < \omega$ via ultrapowers in a similar manner:

Proposition 3. For all $\mathfrak{u}, \mathfrak{v}$, and $n < \omega$, the following are equivalent:

- (i) $\mathfrak{u} R_n \mathfrak{v}$;
- (ii) $\prod_{\mathfrak{u}} \mathfrak{A} \preceq \prod_{\mathfrak{v}} \dots \prod_{\mathfrak{v}} \mathfrak{A}$ (*n times*) for all models \mathfrak{A} ; (iii) $\prod_{\mathfrak{u}} \mathfrak{N} \preceq \prod_{\mathfrak{v}} \dots \prod_{\mathfrak{v}} \mathfrak{N}$ (*n times*).

To handle the case $\alpha \geq \omega$, the following "skew version" of limit ultrapowers is used. First for any $e: A \to B$ define $e^{\mathfrak{u}}: \prod_{\mathfrak{u}} A \to \prod_{\mathfrak{u}} B$ by letting $e^{\mathfrak{u}}(g_{\mathfrak{u}}) := (e \circ g)_{\mathfrak{u}}$. Clearly, $e: \mathfrak{A} \preceq \mathfrak{B}$ implies $e^{\mathfrak{u}}: \prod_{\mathfrak{u}} \mathfrak{A} \preceq \prod_{\mathfrak{u}} \mathfrak{B}$. Then for every model \mathfrak{A} , ultrafilter \mathfrak{u} , and ordinals α , define the models $\mathfrak{A}_{\mathfrak{u},\alpha}$ and their embeddings $e_{\beta\alpha}$ for $\beta < \alpha$:

- (i) $\mathfrak{A}_{\mathfrak{u},0} := \mathfrak{A}, \mathfrak{A}_{\mathfrak{u},1} := \prod_{\mathfrak{u}} \mathfrak{A}$, and $e_{01} = d$ (the diagonal map);
- (ii) if α is limit, then $\mathfrak{A}_{\mathfrak{u},\alpha} := \lim_{\beta \to \alpha} \mathfrak{A}_{\mathfrak{u},\beta}$ w.r.t. the system $\{e_{\gamma\beta}\}_{\gamma < \beta < \alpha}$, and the maps $e_{\beta\alpha}$ ($\beta < \alpha$) are defined naturally;
- (iii) if $\alpha = \beta + 1$, then $\mathfrak{A}_{\mathfrak{u},\alpha} := \prod_{\mathfrak{u}} \mathfrak{A}_{\mathfrak{u},\beta}$, and the maps $e_{\delta\alpha}$ ($\delta < \alpha$) are defined as follows:
 - (a) if $\beta = \gamma + 1$, then $e_{\beta\alpha} := e^{\mathfrak{u}}_{\gamma\beta}$;
 - (b) if $\beta > 0$ is limit, then for any $g \in A_{\mathfrak{u},\beta}$

$$e_{\beta\alpha}(g) := e^{\mathfrak{u}}_{\gamma\beta}(h)$$

for some $\gamma < \beta$ and $h \in g \cap A_{\mathfrak{u},\gamma+1}$;

(c) for any $\delta < \beta$, $e_{\delta\alpha} := e_{\beta\alpha} \circ e_{\delta\beta}$.

Lemma 1. All $\mathfrak{A}_{\mathfrak{u},\alpha}$ are well defined, and if $\beta < \alpha$ then $e_{\beta\alpha} : \mathfrak{A}_{\mathfrak{u},\beta} \preceq \mathfrak{A}_{\mathfrak{u},\alpha}$.

Theorem 1. For $\mathfrak{u}, \mathfrak{v} \in \boldsymbol{\beta}\omega$, and a limit ordinal $\alpha > 0$, the following are equivalent:

- (i) $\mathfrak{u} R_{<\alpha} \mathfrak{v}$;
- (ii) there is $\beta < \alpha$ such that $\mathfrak{A}_{\mathfrak{u},1} \preceq \mathfrak{A}_{\mathfrak{v},\beta}$ for all models \mathfrak{A} ;
- (iii) there is $\beta < \alpha$ such that $\mathfrak{N}_{\mathfrak{u},1} \preceq \mathfrak{N}_{\mathfrak{v},\beta}$.

Consequently, $\mathfrak{u} \leq_{\mathcal{C}} \mathfrak{v}$ iff $\mathfrak{A}_{\mathfrak{u},1} \preceq \mathfrak{A}_{\mathfrak{v},\omega_1}$ for all models \mathfrak{A} , and also iff $\mathfrak{N}_{\mathfrak{u},1} \preceq \mathfrak{N}_{\mathfrak{v},\omega_1}$.

References

- [1] A. R. Blass, Orderings on ultrafilters, PhD Thesis, Harward University, Cambridge, Mass., 1970.
- [2] W. W. Comfort, S. Negrepontis, *The theory of ultrafilters*, Grundlehren math. Wiss., 211, Springer, 1974.
- [3] S. García-Ferreira, "Three orderings on $\beta(\omega) \setminus \omega$ ", Top. Appl., 50 (1993), 119–216.
- [4] S. García-Ferreira, "Comfort types of ultrafilters", Proc. Amer. Math. Soc., 120 (1994), 1251–1260.
- [5] S. García-Ferreira, N. Hindman, D. Strauss, "Orderings of the Stone–Cech remainder of a discrete semigroup", Top. Appl., 97:1-2 (1999), 127-148.
- [6] N. Hindman, D. Strauss, Algebra in the Stone-Cech Compactification: Theory and Applications, sec. rev. and ext. ed., De Gruyter, 2012.
- [7] N. L. Poliakov, D. I. Saveliev, "On ultrafilter extensions of first-order models and ultrafilter interpretations", Arch. Math. Log., 60(2021), 625-681.
- [8] D. I. Saveliev, "Ultrafilter extensions of models", Log. Appl., Lect. Notes Comp. Sci., Springer, 2011, 162–177.
- [9] D. I. Saveliev, "On ultrafilter extensions of models", The Infinity Project Proc., CRM Documents, 11, S.-D. Friedman et al. (eds.), 2012, 599–616.

HSE UNIVERSITY Email address: niknikols0@gmail.com

HIGHER SCHOOL OF MODERN MATHEMATICS MIPT Email address: d.i.saveliev@gmail.com