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Abstract. For a positive integer n, let mnc(n) denote the maximum
number of congruences among all n-element lattices; that is, mnc(n) =
max{|Con(L)| : L is an n-element lattice}, where Con(L) stands for
the congruence lattice of L. We know from a 1997 paper of R. Freese
that mnc(n) = 2n−1. The congruence density cd(L) of a finite lattice
L is defined to be the quotient |Con(L)|/mnc(|L|). That is, if an n-
element lattice L has exactly k congruences, then cd(L) = k/2n−1. The
maximum number of (compatible) quasiorders of an n-element lattice L
is 22n−2, and we define the quasiorder density qd(L) of L—analogously
to cd(L)—as qd(L) := |Quo(L)|/22n−2, where Quo(L) is the quasiorder
lattice of L. We prove that if S is a sublattice of a finite lattice L and
at least one of the following three conditions holds: (i) L is modular;
(ii) S is a cover-preserving sublattice of L; or (iii) L is a dismantlable
extension of S, then cd(L) ≤ cd(S) and qd(L) ≤ qd(S).

1 Introduction

Every lattice occurring in this paper will be assumed to be finite, even
when this assumption is not mentioned again. The paper assumes no more
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than a minimal familiarity with lattices or universal algebra. For a lattice
L = (L;∨,∧), Con(L) will denote the congruence lattice of L. Accordingly,
|Con(L)| stands for the number of congruence relations of L. By Freese [8],
the largest possible value of |Con(L)| for n-element lattices L is mnc(n) =
2n−1. In other words, mnc(n) := max{|Con(L)| : L is an n-element lattice} is
equal to 2n−1. The second, third, fourth, etc. largest values were determined
by Czédli [2], [4], and Mureşan and Kulin [13]. Following Czédli [4], we
define the congruence density cd(L) of a finite lattice L as the quotient
cd(L) := |Con(L)|/mnc(|L|). Clearly, 0 < cd(L) ≤ 1 and, by Freese [8],
cd(L) = 1 if and only if L is a chain. Therefore, in some vague sense,
the congruence density measures how close a lattice is to being a chain. If
a sublattice S of L is far from being a chain, then so is L itself. Some
evidence supporting this idea is implicit in Czédli [4]; namely, whenever S
is a sublattice of a finite lattice L, 8 ≤ |S|, and 1/8 + 3/2|S|−1 ≤ cd(S), then
cd(L) ≤ cd(S). This fact and our experience with Czédli [3] and [4] lead to
the problem: Does the inequality cd(L) ≤ cd(S) hold for every finite lattice
L and every sublattice S of L? In Theorem 2.1, we provide a positive answer
in three particular cases.

A quasiorder on a lattice L is a compatible preorder, that is, a compat-
ible, reflexive, transitive relation on L. The quasiorder lattice Quo(L) =
(Quo(L);⊆) of L is the lattice of all quasiorders on L; note that Con(L)
is a sublattice of Quo(L). Analogously to the case of congruences, we
denote the maximum number of quasiorders on an n-element lattice by
mnq(n) := max{|Quo(L)| : L is an n-element lattice}, and we define the
quasiorder density of a finite lattice L as

qd(L) := |Quo(L)|/mnq(|L|). (1.1)

2 Stating the results

We say that a sublattice S of a finite lattice L is a cover-preserving
sublattice of L if for every x, y ∈ S, whenever y covers x in S (denoted by
x ≺S y), then y covers x in L as well (denoted by x ≺L y or simply x ≺ y). A
proper sublattice of L is a sublattice that is distinct from L. For a sublattice
K of a finite lattice L, we say that L is a dismantlable extension of K if
there exists a sequence T|K|, T|K|+1, . . . , T|L| of sublattices of L such that
T|K| = K, T|L| = L, and for every i ∈ {|K| + 1, . . . , |L|}, Ti−1 is a proper
sublattice of Ti and |Ti| = i. Note that L is a dismantlable lattice in the
well-known classical sense of Baker, Fishburn, and Roberts [1] if and only
if L is a dismantlable extension of one of its one-element sublattices. The
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diagram on the left of Figure 1 exemplifies that a dismantlable lattice L need
not be a dismantlable extension of each of its sublattices K. Our main goal
is to prove the following theorem.

Theorem 2.1. Let S be a sublattice of a finite lattice L, and assume that
at least one of the following three conditions is satisfied:

1. S is a cover-preserving sublattice of L,

2. L is modular, or

3. L is a dismantlable extension of S.

Then cd(L) ≤ cd(S).

For a lattice L, Czédli and Szabó [5] proved1 that Quo(L) is isomorphic to
the direct square Con(L)2. Consequently, mnq(n) = mnc(n)2 = 22n−2, and
(1.1) defining the quasiorder density of a finite lattice L simplifies to qd(L) :=
|Quo(L)|/22|L|−2. Utilizing the isomorphism Quo(L) ∼= Con(L)2, one can
immediately see that the results of Czédli [3], [4], and the present paper,
along with those proved in Mureşan and Kulin [13], directly imply their
“quasiorder-counterparts”. For example, the following statement follows
trivially from Theorem 2.1 and the isomorphism Quo(L) ∼= Con(L)2.

Corollary 2.2. If S is a sublattice of a finite lattice L and at least one of
the conditions (1), (2), or (3) in Theorem 2.1 holds, then qd(L) ≤ qd(S).

We devote the rest of the paper to the proof of Theorem 2.1.

3 Preparatory concepts, notations, and lem-

mas

For a relation ρ ⊆ X2 and a subset Y of X, the restriction of ρ to Y
will be denoted by ρeY . That is, ρeY = ρ ∩ Y 2. However, we do not always
explicitly indicate when a relation is restricted. For example, we usually
write “≤” or opt for an alternative notation rather than “≤eY ”. A pair
(a, b) ∈ L2 is a covering pair (of elements of a lattice L) if the interval
[a, b] = {x ∈ L : a ≤ x ≤ b} is 2-element. Let Cp(L) denote the covering
pairs of L. To recall some other notation and terminology for elements
a, b ∈ L, note that the following seven statements are equivalent: a ≺ b, b
covers a, b is a cover of a, a is a lower cover of b, [a, b] is a prime interval,

1For some historical comments on [5], see Davey [6].
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(a, b) is an edge, and (a, b) ∈ Cp(L). For (a, b) ∈ L2, the least congruence
collapsing a and b will be denoted by con(a, b). The poset of join-irreducible
elements of L is denoted by Ji(L); an x ∈ L is said to be join-irreducible if
it has exactly one lower cover. For x ∈ Ji(L), the unique lower cover of x
will be denoted by x− or, if L needs to be specified, by xL,−. If an x ∈ L has
at least two lower covers, then x is join-reducible; the set of join-reducible
elements will be denoted by Jr(L). Since 0 = 0L has no lower cover at
all, L is the disjoint union of {0}, Ji(L), and Jr(L). The poset Mi(L) of
meet-irreducible elements, the set Mr(L) of meet-reducible elements, and the
unique cover x+ = xL,+ of an x ∈ Mi(L) are defined dually.

For pairs (a, b), (c, d) ∈ L2, we say that (a, b) is prime-perspective up to
(c, d), in notation (a, b)

p-up−→ (c, d), if a = b ∧ c and c ≤ d ≤ b ∨ c. Similarly,

(a, b) is prime-perspective down to (c, d), in notation if (a, b)
p-dn−→ (c, d),

if b = a ∨ d and a ∧ d ≤ c ≤ d. If (a, b), (c, d) ∈ L2, a ≤ b, c ≤ d,
b ∧ c = a, and b ∨ c = d, then2 (a, b) is up-perspective to (c, d) and (c, d)
is down-perspective to (a, b); the respective notations are (a, b)

up∼ (c, d) and

(c, d)
dn∼ (a, b). If (a, b)

up∼ (c, d), then (a, b)
p-up−→ (c, d), and similarly for

the “downward variant”. Let N5 denote the 5-element nonmodular lattice.
For distinct covering pairs (a, b), (c, d) ∈ Cp(L), (the dual of) Note 1.2 of
Grätzer [11] asserts that

if (a, b)
p-up−→ (c, d) but (a, b) 6up∼ (c, d), then {a, b, c, d, b ∨ c} ∼= N5; (3.1)

in particular, {a, b, c, d, b ∨ c} is a sublattice of L. We recall the Prime
Projectivity Lemma from Grätzer [11] in the following form.

Lemma 3.1 (Prime Projectivity Lemma, Grätzer [11]). Let (a, b), (c, d) ∈
Cp(L) be distinct covering pairs of a finite lattice L. Then con(a, b) ≥
con(c, d) if and only if there is a finite sequence (a, b) = (x0, y0), (x1, y1),
. . . , (xn, yn) = (c, d) of covering pairs of L such that for each i ∈ {1, . . . , n},
either (xi−1, yi−1)

p-up−→ (xi, yi) or (xi−1, yi−1)
p-dn−→ (xi, yi).

Based on Grätzer [11] or the folklore, or trivially, note the following.

Lemma 3.2 (Grätzer [11]). If (a, b) = (x0, y0), (x1, y1), . . . , (xn, yn) =
(c, d) are pairs of elements of L such that, for each i ∈ {1, . . . , n}, either

(xi−1, yi−1)
p-up−→ (xi, yi) or (xi−1, yi−1)

p-dn−→ (xi, yi), then con(c, d) ≤ con(a, b).

This paragraph, in the same way as Czédli [4], strengthens Theorem
3.10 from Grätzer [10]. A subset X of a poset P is a down-set if for every

2This definition of up-perspectivity is redundant; e.g., b ∧ c = a implies that a ≤ b.
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u ∈ X, the order ideal idl(u) := {y ∈ P : y ≤ u} is a subset of X.
The collection Dn(P ) = (Dn(P );⊆) of all down-sets of P is a distributive
lattice. Let L be a finite lattice. Since Con(L) is distributive, the structure
theorem of finite distributive lattices gives that Con(L) ∼= Dn(Ji(Con(L)));
see Theorems 107 and 149 of Grätzer [9]. Letting χL = {

(
(a, b), (c, d)

)
∈

Cp(L)2 : con(a, b) ≤ con(c, d)},
(
Cp(L);χL) is a quasiordered set. We will

write (a, b) ≤χL
(c, d) instead of

(
(a, b), (c, d)

)
∈ χL. It is well known, see

Grätzer [11, 1st sentence], that {con(a, b) : (a, b) ∈ Cp(L)} coincides with
Ji(Con(L)). A subset W of Cp(L) is a congruence-determining subset of
Cp(L) if {con(a, b) : (a, b) ∈ W} coincides with Ji(Con(L)). In this case, for
brevity, we write (W ;χL) instead of the more precise but lengthy (W ;χLeW );
it is a quasiordered set. A subset X of W is a χL-down-set of (W ;χL) if for
every (a, b) ∈ X and (c, d) ∈ W , (c, d) ≤χL

(a, b) implies that (c, d) ∈ W .
The collection of χL-down-sets of (W ;χL) will be denoted by Dn(W ;χL).
Since Cp(L) is a congruence-determining subset of itself by Grätzer [11, 1st
sentence], the W = Cp(L) particular case of the following lemma is the same
as Grätzer [10, Theorem 3.10].

Lemma 3.3 (Czédli [3]). If L is a finite lattice, then for every congruence-
determining subset W of Cp(L), we have that Con(L) ∼= Dn(W ;χL).

Since [3] provides only an outline rather than a proof and has not been
published at the time of writing, we present an easy proof here.

Proof of Lemma 3.3. Let J := Ji(Con(L)). With reference to Theorems 107
and 149 of Grätzer [9], we have already mentioned that Con(L) ∼= Dn(J).
Thus, it suffices to prove that Dn(W ;χL) and Dn(J) are isomorphic.

For X ∈ Dn(W ;χL), we define f(X) := {con(a, b) : (a, b) ∈ X}. Since
J = {con(a, b) : (a, b) ∈ Cp(L)} (or since W is a congruence-determining
subset of Cp(L)), we have that f(X) ⊆ J . To show that f(X) ∈ Dn(J),
assume that α ∈ f(X), β ∈ J , and β ≤ α. As α ∈ f(X), α = f(a, b)
for some (a, b) ∈ X. As W is a congruence-determining subset, β = (c, d)
for some (c, d) ∈ W . Since X ∈ Dn(W ;χL) and since con(c, d) = β ≤
α = con(a, b) means that (c, d) ≤χL

(a, b), we obtain that (c, d) ∈ X. That
is, β = con(c, d) ∈ f(X), showing that f(X) ∈ Dn(J). Consequently,
f : Dn(W ;≤χL

)→ Dn(J) is a map. Clearly, this map is order-preserving.

Conversely, we define a map g : Dn(J) → Dn(W ;≤χL
) by letting, for

Y ∈ Dn(J), g(Y ) := {(a, b) ∈ W : con(a, b) ∈ Y }. To show that g(Y ) ∈
Dn(W ;≤χL

), assume that (a, b) ∈ g(Y ), that is con(a, b) ∈ Y , and (c, d) ∈
W such that (c, d) ≤χL

(a, b). Then con(c, d) ≤ con(a, b) and con(a, b) ∈
Y ∈ Dn(J) imply that con(c, d) ∈ Y , whereby (c, d) ∈ g(Y ). Therefore,
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g(Y ) ∈ Dn(W ;≤χL
), g is indeed a map g : Dn(J) → Dn(W ;≤χL

), and this
map is clearly order-preserving.

For X ∈ Dn(W ;χL), the inclusion X ⊆ g(f(X)) is obvious. Assume
that (a, b) ∈ g(f(X)). Then con(a, b) ∈ f(X), that is, con(a, b) = con(u, v)
for some (u, v) ∈ X. Since con(a, b) = con(u, v) yields that (a, b) ≤χL

(u, v),
and since X ∈ Dn(W ;χL), we obtain that (a, b) ∈ X. Hence, g(f(X)) ⊆ X,
and we have shown that g ◦ f is the identity map of Dn(W ;χL). Finally,

let Y ∈ Dn(J). Using at
∗
= that W is a congruence-determining subset, we

obtain that

f(g(Y )) = {con(a, b) : (a, b) ∈ g(Y )}
= {con(a, b) : (a, b) ∈ {(u, v) ∈ W : con(u, v) ∈ Y }}
= {con(a, b) : (a, b) ∈ W and con(a, b) ∈ Y } ∗= Y.

Thus, f ◦ g is the identity map of Dn(J), whereby f and g are reciprocal
order isomorphisms, completing the proof of Lemma 3.3.

Since the proof of the following well-known lemma is short and (the dual
of) its idea will emerge later (see Case 2 in the proof of Lemma 4.4), we
present the proof after stating the lemma.

Lemma 3.4 (Day [7, Page 71]). For a finite lattice L and a subset W of
Cp(L), if {(a−, a) : a ∈ Ji(L)} ⊆ W , then W is a congruence-determining
subset of Cp(L).

Proof. It suffices to show that {(a−, a) : a ∈ Ji(L)} is a congruence-deter-
mining subset of Cp(L). Take a member of Ji(Con(L)); it is of the form
con(u, v) with (u, v) ∈ Cp(L) by Grätzer [11, 1st sentence]. We can assume
that v /∈ Ji(L), since otherwise u = v− and there is nothing to show. Pick
a minimal element b ∈ idl(v) \ idl(u). Clearly, b ∈ Ji(L). Using that b ‖ u,
u ≺ v, b− ≺ b, b− ≤ u ∧ b < b, and u < u ∨ b ≤ v, we obtain that

(u, v)
dn∼ (b−, b) and (b−, b)

up∼ (u, v). Thus, Lemma 3.2 yields that con(u, v) =
con(b−, b) ∈ {(a−, a) : a ∈ Ji(L)}.

4 Further lemmas and completing the proof

of Theorem 2.1

To enhance the paper’s readability, we will present the proofs of the three
parts of Theorem 2.1 in separate lemmas, with some parts needing multiple
lemmas.
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Lemma 4.1. Let S be a cover-preserving sublattice of a finite lattice L. If
there are subsets H and R of Cp(L) such that {(aS,−, a) : a ∈ Ji(S)} ⊆ H ⊆
Cp(S), |R| ≤ |L| − |S|, {(aL,−, a) : a ∈ Ji(L)} ⊆ H ∪ R, and H ∩ R = ∅,
then cd(L) ≤ cd(S).

Proof. Since S is a cover-preserving sublattice, Cp(S) ⊆ Cp(L). When deal-
ing with the quasiordered sets (H;χL) and (H;χS), χL and χS will stand for
the restrictions χLeH and χSeH , respectively. Analogous conventions apply
consistently throughout the paper. Let W := H ∪ R. For X ∈ Dn(W ;χL),
define f(X) := X ∩H. It follows from Lemma 3.1 that χLeH ⊇ χSeH , that
is, χLeH is a coarser relation than χSeH . Hence, f(X) ∈ Dn(H;χS). So,
f : Dn(W ;χL) → Dn(H;χS) is a function. Let Y ∈ Dn(H;χS) be a down-
set within the range of f . Since W is the disjoint union of H and R, every
f -preimage of Y has the unique form X = Y ∪ Z, where Z ⊆ R. Thus, Y
has at most 2|R| preimages, and we obtain that

|Dn(W ;χL)| ≤ |Dn(H;χS)| · 2|R|. (4.1)

By Lemma 3.4, W and H are congruence-preserving subsets of Cp(L) and
Cp(S), respectively. Combining this fact with (4.1) and Lemma 3.3,

cd(L) = |Dn(W ;χL)|/2|L|−1 ≤ |Dn(H;χS)| · 2|R|/2|L|−1

≤ |Dn(H;χS)| · 2|L|−|S|/2|L|−1 = |Dn(H;χS)|/2|S|−1 = cd(S).

Lemma 4.2. If S is a cover-preserving sublattice of a finite lattice L, then
the inequality cd(L) ≤ cd(S) holds.

Proof. First, we show that

if 0S 6= a ∈ Ji(L) ∩ S, then a ∈ Ji(S) and aL,− = aS,− ∈ S. (4.2)

The membership a ∈ Ji(S) is trivial. Since aS,− ≺S a and S is a cover-
preserving sublattice, aS,− ≺L a, whereby aL,− = aS,− ∈ S, showing (4.2).
There are two cases to consider, and each of them will be handled by applying
Lemma 4.1.

First, we assume that 0S = 0L. Let R := {(aL,−, a) : a ∈ Ji(L) \ S}
and H := Cp(S). Observing that 0S = 0L /∈ Ji(L), (4.2) implies that
{(aL,−, a) : a ∈ Ji(L)} ⊆ H ∪ R. Since H ∩ R = ∅ and |R| = |Ji(L) \ S| ≤
|L \ S| = |L| − |S| are clear, Lemma 4.1 yields the required cd(L) ≤ cd(S).

Second, we assume that 0L < 0S. Pick a lover cover z ∈ L of 0S. Let
R := {(aL,−, a) : a ∈ Ji(L) \ S} ∪ {(z, 0S)} and H := Cp(S). Regardless
of whether 0S ∈ Ji(L), (4.2) implies that {(aL,−, a) : a ∈ Ji(L)} ⊆ H ∪ R.
Since 0L is neither in S nor in Ji(L), we have that Ji(L)\S ⊆ L\ ({0L}∪S).
Thus, |Ji(L) \ S| ≤ |L| − 1− |S|, whereby |R| ≤ |L| − |S|. These facts, the
obvious H ∩R = ∅, and Lemma 4.1 imply the required cd(L) ≤ cd(S).
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Lemma 4.3. In a finite lattice K, let a ≺ b such that a ∈ Mi(K) and
b ∈ Ji(K). Then for every (x, y) ∈ Cp(K), (x, y) ≤χK

(a, b) ⇐⇒ (x, y) =
(a, b).

Proof. For (u, v) ∈ Cp(K) \ {(a, b)}, a ∈ Mi(L) excludes that (a, b)
p-up−→

(u, v), while (a, b)
p-dn−→ (u, v) would contradict that b ∈ Ji(L). Thus, Lemma

3.1 applies, completing the proof.

Lemma 4.4 (Edge Division Lemma). Let a ≺ b in a finite lattice K, and
add a new element c to K such that a ≺ c ≺ b in the new lattice M :=
K ∪ {c}, c is doubly irreducible in M , and K is a sublattice of M . Then
cd(M) ≤ cd(K).

Proof. With n := |K|, we have that |M | = n + 1. We can assume that
n ≥ 2. Even though Cp(K) is not a subset of Cp(M), Lemmas 3.1 and 3.2
imply that for any (x1, y1), (x2, y2) ∈ Cp(K) ∩ Cp(M),

if (x1, y1) ≤χK
(x2, y2), then (x1, y1) ≤χM

(x2, y2). (4.3)

Similarly, these two lemmas imply that for any (x1, y1), (x2, y2) ∈ Cp(K)

if (x1, y1) ≤χK
(x2, y2), then conM(x1, y1) ≤ conM(x2, y2). (4.4)

Depending on a and b, we consider two cases.

Case 1. In this case, we assume that a ∈ Mi(K) and b ∈ Ji(K). For
Y ∈ Dn(Cp(M);χM), we define

f1(Y ) :=

{
Y \ {(c, b)}, if (a, c) /∈ Y,
{a, b} ∪ (Y \ {(a, c), (c, b)}), if (a, c) ∈ Y.

(4.5)

We claim that f1(Y ) ∈ Dn(Cp(K);χK).
First, assume that Y ∈ Dn(Cp(M);χM) such that (a, c) /∈ Y ; then f1(Y )

is computed by the first line of (4.5). Assume also that (u, v) ∈ f1(Y ),
(x, y) ∈ Cp(K), and (x, y) ≤χK

(u, v), that is, conK(x, y) ≤ conK(u, v). If
(u, v) = (a, b), then (x, y) = (u, v) ∈ f1(Y ) by Lemma 4.3. Hence, we can
assume that (u, v) 6= (a, b). Then (u, v) ∈ Cp(K) ∩ Cp(M), and (u, v) ∈
f1(Y ) together with (4.5) implies that (u, v) ∈ Y . If (x, y) is also in Cp(M),
then (x, y) ≤χM

(u, v) by (4.3), whereby (x, y) is in the χM -down-set Y .
Thus (x, y), which is distinct from (c, b) /∈ Cp(K), belongs to f1(Y ), as
required. So we can assume that (x, y) ∈ Cp(K) \ Cp(M), that is, (x, y) =
(a, b). By (4.4), conM(a, b) = conM(x, y) ≤ conM(u, v). Since the blocks
of every lattice congruence are convex sublattices, (a, c) ∈ conM(a, b), and
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so conM(a, c) ≤ conM(a, b). Thus, by transitivity, conM(a, c) ≤ conM(u, v),
whereby (a, c) ≤χM

(u, v) ∈ Y , although Y is a χM -down-set and (a, c) /∈ Y
has been assumed. This is a contradiction, which rules out the possibility
that (x, y) = (a, b) and implies that f1(Y ) ∈ Dn(Cp(K);χK).

Second, assume that (a, c) ∈ Y ∈ Dn(Cp(M);χM). Assume also that
(u, v) ∈ f1(Y ), (x, y) ∈ Cp(K) \ {(u, v)}, and (x, y) ≤χK

(u, v), that is,
conK(x, y) ≤ conK(u, v). Since (a, b) ∈ f1(Y ) by (4.5), we can assume that
(x, y) 6= (a, b). By Lemma 4.3, (u, v) 6= (a, b). Hence, both (x, y) and
(u, v) are in Cp(M). Thus we obtain from (4.3) that (x, y) ≤χM

(u, v).
Since (a, b) 6= (u, v) ∈ Cp(K) ∩ Cp(M), (4.5) shows that (u, v) ∈ Y . From
(x, y) ≤χM

(u, v) ∈ Y and Y ∈ Dn(Cp(M);χM), we obtain that (x, y) ∈ Y .
Combining (x, y) ∈ Y with (x, y) ∈ Cp(K), (a, c) /∈ Cp(K), and (c, b) /∈
Cp(K), it follows that (x, y) ∈ f1(Y ), as required.

We have shown that, regardless of whether (a, c) is in Y or not, f1(Y )
belongs to Dn(Cp(K);χK). Thus, f1 : Dn(Cp(M);χM) → Dn(Cp(K);χK)
is a map. We claim that

each X ∈ Dn(K; Cp(K)) has at most twof1-preimages. (4.6)

To show this, first we note that Cp(M) \ Cp(K) = {(a, c), (c, b)}. Assume
that Y ∈ Dn(Cp(M);χM) such that f1(Y ) = X. If (a, b) /∈ X, then X =
f1(Y ) is computed by the first line of (4.5), whereby Y ∈ {X,X ∪ (c, b)},
and X has at most two f1-preimages. Similarly, if (a, b) ∈ X, then f1(Y ) is
determined by the second line of (4.5), and Y ∈ {(X\{(a, b)})∪{(a, c)}, (X\
{(a, b)})∪{(a, c), (c, b)}}. Thus, X has at most two preimages again, proving
(4.6).

It follows from (4.6) that |Dn(Cp(M);χM)| ≤ 2·|Dn(Cp(K);χK)|. Com-
bining this inequality with Lemmas 3.3 and 3.4, we complete Case 1 by

cd(M) =
|Con(M)|
2(n+1)−1 ≤

2 · |Con(K)|
2(n+1)−1 =

|Con(K)|
2n−1

= cd(K). (4.7)

Case 2. This case is devoted to the situation where a /∈ Mi(K) or b /∈ Ji(K).
By duality, we can assume that a /∈ Mi(K); see Figure 1, where the bold
lines indicate coverings in M , while the thin solid line and the dotted line
stand for “<” and “≤”, respectively. The sole element of M \ K, namely
c, is grey-filled. Since a 6= Mi(K) and a 6= 1K (as a ≺K b), there is an
element d ∈ K such that d 6= b and a ≺K d. Let u ∈ K be maximal
element of fil(d) \ fil(b), and define v := b ∨ u. By the maximality of u, it
is straightforward to obtain that u ≺ v. Since b ≤ u would contradict the
choice of u and u ≤ b would give that d ≤ b, contradicting that b and d are
distinct covers of a, it follows that b and u are incomparable. So, using that
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Figure 1: An example on the left and illustrating Case 2 in the proof of
Lemma 4.4 on the right

a ≺K b and a ≤ b ∧ u < b , we have that a = b ∧ u. Hence, (a, b)
up∼ (u, v)

and (u, v)
dn∼ (a, b). So, Lemma 3.1 yields that conK(a, b) = conK(u, v).

Combining this equality with Lemma 3.4, we obtain that

H := Cp(K)\{(a, b)} is a congruence-determining subset of Cp(K). (4.8)

Turning our attention to M , observe that c 6≤ u, since otherwise either
c = u ∈ K or b = cM,+ ≤ u would be a contradiction. As u ≤ c would also
lead to a contradiction, namely d ≤ u ≤ c ≤ b, c and u are incomparable.
Hence, c < c∨u, and so v = b∨u = cM,+ ∨u ≤ (c∨u)∨u = c∨u ≤ v gives
that c ∨ u = v, while a ≤ c ∧ u ≤ b ∧ u = a implies that c ∧ u = a. Hence,

(a, c)
up∼ (u, v) and (u, v)

dn∼ (a, c). Thus, conM(a, c) = conM(u, v) by Lemma
3.1. This equality and Lemma 3.4 imply that

W := Cp(M) \ {(a, c)} is a congruence-determining subset of Cp(M).
(4.9)

Note that H = Cp(K) ∩ Cp(M) ⊆ W . For Y ∈ Dn(W ;χM), let f2(Y ) :=
Y ∩ H; we claim that f2(Y ) ∈ Dn(H;χK). Assume that (p, q) ∈ f2(Y ),
(x, y) ∈ H, and (x, y) ≤χK

(p, q). As H = Cp(K) ∩ Cp(M), (4.3) yields
that (x, y) ≤χM

(p, q). Thus, using that (p, q) ∈ f2(Y ) ⊆ Y ∈ Dn(W ;χM),
we have that (x, y) ∈ Y , and so (x, y) ∈ Y ∩ H = f2(Y ). Therefore, the
rule f2(Y ) := Y ∩H defines a function f2 : Dn(W ;χM)→ Dn(H;χK). Since
W \H = {(c, b)} is a singleton, every X ∈ Dn(H;χK) has at most two f2-
preimages. Hence, |Dn(W ;χM)| ≤ 2 · |Dn(H;χK)|. Based on this inequality,
(4.8), (4.9), and Lemma 3.3 imply the required cd(M) ≤ cd(K) in the same
way as in (4.7). This completes Case 2 and the proof of Lemma 4.4.

Lemma 4.5. If S is a sublattice of a finite modular lattice L, then cd(L) ≤
cd(S).

Proof. Throughout the proof, let S be a sublattice of a finite modular lat-
tice L.
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For (a, b), (c, d) ∈ Cp(L), we have that (a, b)
up∼ (c, d) ⇐⇒ (c, d)

dn∼ (a, b).
We will refer to this fact as the symmetry of perspectivity. We know from
Dedekind’s criterion for modularity that a modular lattice cannot contain
a sublattice isomorphic to N5. Combining this fact with (3.1) and its dual,
the symmetry of perspectivity, and Lemma 3.1, we obtain that for every
(x, y), (u, v) ∈ Cp(L),

(x, y) ≤χL
(u, v) ⇐⇒ conL(x, y) = conL(u, v), so χL is an equivalence.

(4.10)
Since S is also modular, χS is an equivalence relation on Cp(S), too.

We proceed by recalling a well-known isomorphism theorem for modular
lattices (see, e.g., Grätzer [9, Theorem 348]), which asserts that perspective
intervals in L are isomorphic (sub)lattices. That is, if (a, b), (c, d) ∈ SO(L)
such that (a, b)

up∼ (c, d), then g : [a, b] → [c, d], defined by x 7→ c ∨ x, and
h : [c, d] 7→ [a, b], defined by y 7→ b ∧ y are reciprocal lattice isomorphisms.
Note that g and h are algebraic functions (univariate polynomials), whence
they preserve congruence relations. Assume that a ≤ x ≺L y ≤ b, and let
x′ := g(x) and y′ := g(y). As g is a lattice isomorphisms, c ≤ x′ ≺L y′ ≤ d.
We claim that under the assumptions just established,

(x, y) ≤χL
(x′, y′), (x′, y′) ≤χL

(x, y), and conL(x, y) = conL(x′, y′). (4.11)

To see this, it suffices to deal with the congruences that the covering pairs
in question generate. Since (x, y) ∈ conL(x, y) and g preserves conL(x, y),
(x′, y′) = (g(x), g(y)) ∈ conL(x, y), whereby conL(x′, y′) ≤ conL(x, y). Simi-
larly, using that h(x′) = h(g(x)) = x, h(y′) = y, and h preserves conL(x′, y′),
we obtain that conL(x, y) ≤ conL(x′, y′), and we conclude (4.11). Note that
(4.10) would allow a shorter formulation of (4.11).

Next, assume that (a, b) = (x0, y0), (x1, y1), . . . , (xt, yt) = (c, d) is a se-
quence of distinct members of SO(L) such that for each i ∈ {1, . . . , t},
either (xi−1, yi−1)

up∼ (xi, yi) or (xi−1, yi−1)
dn∼ (xi, yi). (Since (xi−1, yi−1) 6=

(xi, yi),
up∼ and

dn∼ cannot simultaneously hold.) For i ∈ {1, . . . , t} such that
(xi−1, yi−1)

up∼ (xi, yi), let gi : [xi−1, yi−1]→ [xi, yi] be the isomorphism defined

by gi(ξ) := xi ∨ ξ. Dually, for i ∈ {1, . . . , t} such that (xi−1, yi−1)
dn∼ (xi, yi),

let gi : [xi−1, yi−1] → [xi, yi] be the isomorphism defined by gi(ξ) := yi ∧ ξ.
Let g : [a, b] → [c, d] be the composite gt . . . g2g1 of the “stepwise” isomor-
phisms gt, . . . , g1. Applying (4.11) or its dual to each of these stepwise
isomorphisms, we conclude that for all x and y satisfying a ≤ x ≺L y ≤ b,

(x, y) ≤χL

(
g(x), g(y)

)
and conL(x, y) = conL(g(x), g(y)). (4.12)

We know from Lemma 4.2 that for the interval [0S, 1S] of L, we have that
cd(L) ≤ cd([0S, 1S]). So, it suffices to prove that cd([0S, 1S]) ≤ cd(S). In
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other words and to simplify the notation, we can assume that L = [0S, 1S],
that is, 0 := 0S = 0L and 1 := 1L = 1S. Take a maximal chain C = {0 =
c0, c1, . . . , cn−1, cn = 1} in S such that ci−1 ≺S ci for i ∈ {1, . . . , n}, and
define H0 := {(ci−1, ci) : i ∈ {1, . . . , n}}. Note that H0 = Cp(C) ⊆ Cp(S).
We define

I := {i : 1 ≤ i ≤ n and (ck−1, ck) ≤χS
(ci−1, ci) holds for no k < i}, (4.13)

H := {(ci−1, ci) ∈ H0 : i ∈ I}. (4.14)

In other words, H consists of the first members of the blocks of the equiva-
lence χSeH0

. We know from Grätzer and Nation [12] that H0 is a congruence-
determining subset of Cp(S). Hence, so is H by (4.10), (4.13), and (4.14).
Furthermore, χSeH is the equality relation, whereby Dn(H;χS) is the set of
all subsets of H. Thus, denoting the powerset lattice ({X : X ⊆ H};⊆) of
H by Pow(H), Lemma 3.3 yields that

Con(S) ∼= Dn(H;χS) = Pow(H) and |Con(S)| = 2|H| = 2|I|. (4.15)

Next, for i ∈ I, select di,0, . . . , di,mi
∈ L such that di,j−1 ≺L di,j for

j ∈ {1, . . . ,mi}, di,0 = ci−1, and di,mi
= ci. For k ∈ {1, . . . , n} \ I, take the

unique subscript i(k) such that k < i(k) and (ck−1, ck) ≤χS
(ci(k)−1, ci(k)).

Combining Lemmas 3.1 and 3.2 with (4.12), we can fix an isomorphism
hk : [ci(k)−1, ci(k)] → [ck−1, ck] such that (4.12) remains valid when g is re-
placed by hk. Let mk := mi(k). We define dk,0 := ck−1 = hk(di(k),0) =
hk(ci(k)−1), dk,1 := hk(di(k),1), dk,2 := hk(di(k),2), . . . , dk,mk

=: hk(di(k),mk
) =

hk(ci(k)). Since hk is an isomorphism, dk,j−1 ≺L dk,j for j ∈ {1, . . . ,mk}.
Let W0 := {(dk,j−1, dk,j) : 1 ≤ k ≤ n and 1 ≤ j ≤ mk}. Since W0 is the

set of covering pairs of a maximal chain, W0 is a congruence-determining
subset of Cp(L) by Grätzer and Nation [12]. Let W := {(di,j−1, di,j) : i ∈ I
and 1 ≤ j ≤ mi}. If k ∈ {1 . . . , n}\ I, then (4.12) with hk replacing g yields
that, for j ∈ {1, . . . ,mk}, conL(dk,j−1, dk,j) = conL(di(k),j−1, di(k),j). This
fact, together with the fact that W0 is a congruence-determining subset of
Cp(L), implies that W is also a congruence-determining subset of Cp(L).
Since |Dn(W ;χL)| ≤ 2|W |, Lemma 3.3 implies that |Con(L)| ≤ 2|W |.

Observe that |W | =
∑

i∈I mi. For i ∈ I, the elements di,1, di,2, . . . ,
di,mi−1 are outside S. (If mi = 1, then no such elements exist.) Furthermore,
if i, i′ ∈ I such that i < i′, then di,1, . . . , di,mi−1 are smaller than—and
therefore distinct from—each of di′,1, . . . , di′,mi′−1. Hence, we obtain the
second equality in the computation below from the fact that we take the
union of pairwise disjoint subsets of L \ S:

|W | − |I| =
∑
i∈I

(mi − 1) = |
⋃
i∈I

{di,1, . . . , di,mi−1}| ≤ |L| − |S|. (4.16)
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Finally, combining (4.15), (4.16), and the inequality |Con(L)| ≤ 2|W | (proved
above), we obtain that

cd(L) =
|Con(L)|

2|L|−1
≤ 2|W |

2|L|−1
=

2|W |−|I|

2|L|−|S|
· 2|I|

2|S|−1
≤ 2|I|

2|S|−1
=
|Con(S)|

2|S|−1
= cd(S).

Proceeding to the final proof in the paper, we show that the lemmas
established so far imply the theorem.

Proof of Theorem 2.1. Let S be a sublattice of a finite lattice L. If S is a
cover-preserving sublattice of L or L is modular, then cd(L) ≤ cd(S) by
Lemma 4.2 or Lemma 4.5, respectively. Hence, we can assume that L is a
dismantlable extension of S. Clearly, it suffices to deal with the particular
case |L| − |S| = 1, which implies the general case by a trivial induction on
|L| − |S|. So S = L \ {c}, where c is a doubly irreducible element of L. Let
a :=

∨
{x ∈ S : x < c} and b :=

∧
{x ∈ S : x > c}. Since S is a sublattice,

{a, b} ⊆ S and a <L c <L b. If a ≺S b, then, letting (S, c, L) play the role
of (K, c,M), the (Edge Division) Lemma 4.4 yields the required inequality,
cd(L) ≤ cd(S).

Therefore, we can assume that b does not cover a in S. This assump-
tion implies that Cp(L) is the disjoint union of Cp(S) and {(a, c), (c, b)}.
Furthermore, b /∈ Ji(L). Let H := Cp(S) and R := {(a, c)} = {(cL,−, c)}.
Observe that |R| = 1 ≤ 1 = |L| − |S| and H ∩ R = ∅. Since b /∈ Ji(L),
we have that {(xL,−, x) : x ∈ Ji(L))} ⊆ H ∪ R. Therefore, the required
cd(L) ≤ cd(S) follows from Lemma 4.1, completing the proof of Theorem
2.1.
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