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In this old (1957) black-and-white movie, a businessman is exposed
to radioactive dust during a boating trip. He begins to shrink while
researchers try and fail to stop that process.





The Blum-Shub-Smale model

I Formalization of “real RAM” model:
exact arithmetic (+,−,×,≤) on real numbers.

I Versions of “P=NP?” problem over R, C, finite fields...

I Initial paper: L. Blum, M. Shub and S. Smale. On a theory of
computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines,
Bulletin AMS, 1989.

I Their book: L. Blum, F. Cucker, M. Shub, S. Smale.
Complexity and Real Computation, Springer, 1998.
Includes lots of material on numerical algorithms.

I B. Poizat’s book: Les petits cailloux. Aléas, 1995.
Model theoretic point of view.
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Model theoretic point of view.



The Blum-Shub-Smale model

I Formalization of “real RAM” model:
exact arithmetic (+,−,×,≤) on real numbers.

I Versions of “P=NP?” problem over R, C, finite fields...

I Initial paper: L. Blum, M. Shub and S. Smale. On a theory of
computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines,
Bulletin AMS, 1989.

I Their book: L. Blum, F. Cucker, M. Shub, S. Smale.
Complexity and Real Computation, Springer, 1998.
Includes lots of material on numerical algorithms.

I B. Poizat’s book: Les petits cailloux. Aléas, 1995.
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Model theoretic point of view.







Computation in first-order structures

I Complexity classes PM ,NPM for any structure M.
When M is finite, we obtain the usual classes P and NP.

I Model of computation: multi-tape Turing machines over M.
Each cell contains an element of M.
Machine can apply functions and relations of M.
The input is a finite sequence of elements of M.

I We can also define PM using uniform circuit families over M.
These generalize Boolean circuits.
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Boolean circuits
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Circuits over M

I We have gates for functions and relations of M.

I For instance: +,×,≤ over R.
if-then-else statement: s(x , y , z) = xy + (1− x)z .

I Formulas have a tree structure,
but circuits are directed acyclic graphs ⇒
Circuits are compact representations
of quantifier-free formulas.
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NP and quantifier elimination

For a problem A ∈ NPM :

x ∈ A⇔ ∃y ∈ Mp(n)〈x , y〉 ∈ B

where x ∈ Mn is the input, B ∈ P and p is a polynomial.
y is the ”certificate” of membership to A.
Suppose M admits quantifier elimination.

I For any quantifier-free formula F :

∃yF (x , y)⇔ G (x)

where G is quantifier free.

I PM = NPM means:
G can be constructed in polynomial time from F ,
if we represent G by a circuit over M.
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The BSS model today

I Research area no longer so active.

I Some exceptions: ∃R-complete problems (' NPR-complete):
Nash equilibria [Schaefer-Štefankovič], graph drawing,
tensor rank [SS, Shitov], covering of polygons
[Abrahamsen’21]...
Tensor rank is NPF-complete for any field F [SS’18].

PR vs NPR, PC vs NPC are natural problems,
closely connected to complexity of quantifier elimination.
They should be solved someday!
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BSS machines are very powerful:

+ good expressive power.
- proving lower bounds is difficult.

We still have the lower bounds:

I NCR ( PR ( EXPR
(Cucker’92, degree argument).

I For fixed polynomial time: TIMER(nd) 6= NTIMER(nd)
(Cucker-Shub’96, number of connected components).

And that’s it!

A “solution” to this problem: let’s shrink the model!

For instance: P 6= NP over (R,+,−,=) (Meer, 1992)

What about (R,+,−,≤) ?
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Decision and computation trees

∃x ∈ R ax2 + bx + c = 0 ?

a = 0?

b = 0?

c = 0?

Accept Reject

Accept

b2 − 4ac ≥ 0?

Accept Reject

For polynomials of bounded degree (e.g., d = 1, d = 2):
Complexity ≡ tree depth.

For unbounded degree:
complexity of polynomial evaluation should be taken into account
(We’ll have branch nodes and computation nodes).



The unreasonable power of trees

Upper bounds:

I Tree depth ≤ Computation time of BSS machine.

I Depth n for any Boolean function on n variables.

I Depth Õ(n4) for Knapsack (Meyer auf der Heide’84, ’88);
Point location in arrangements of hyperplanes (Meiser’93).

Lower bounds:

I Ω(n2) for Knapsack (Dobkin-Lipton’76)
with linear decision trees (d = 1).

I Many other results by Yao, Grigoriev, Karpinski, Gabrielov,
Vorobjov...
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Machines over the reals with addition and order

Let M = (R,+,−, <).
Transfer “Theorem” [Fournier-Koiran’00]:
P = NP⇔ PM = NPM .
Proof of ⇒: Let A be an arbitrary problem in NPM .

I A can be solved unconditionally in depth poly(n).
Proof is not (efficiently) constructive.

I Construct “on the fly” the path followed by input x ∈ Rn

from root to leaf with help of an oracle in NP.

Can we shrink the BSS model in another way?

Instead of removing multiplication,
we can remove branching.
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Arithmetic circuits / straight-line programs
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A depth 4 circuit.
The inputs are variables (x1, x2, . . .) or constants (−1, 2,

√
2, ...),

the output is a polynomial.



VP = VNP?

I The permanent polynomial

perm(X ) =
∑
σ∈Sn

n∏
i=1

Xiσ(i)

is VNP-complete if char(K ) 6= 2 (Valiant’79, Bürgisser’00).

I As a result,
VPK = VNPK ⇔ perm has polynomial size arithmetic circuits.



Connection to the BSS model

Let K be the field of real or complex numbers.
Transfer “Theorem” [Koiran-Perifel’07-09]:
(P = PSPACE and VPK = VNPK )⇒ PK = NPK .
In fact, (P = PSPACE and VPK = VNPK )⇔ PK = PARK .

Proof sketch of ⇒:
Construct “on the fly” the path followed by input x ∈ Rn

from root to leaf with help of oracles in PSPACE and VNP.

What next?

I It seems reasonable to focus on VP versus VNP.

I But it’s a difficult question...

I Let’s shrink the arithmetic circuit model!
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Bounded depth circuits

I Model: arithmetic circuits of depth 3 (ΣΠΣ) over K ,
char(K )=0.

I Target polynomial:
SYMd

n , the symmetric polynomial of degree d in n variables.

Theorem [Nisan-Wigderson’96]: Any homogeneous depth 3 circuit
computing SYM2d

n requires size Ω((n/4d)d).
Complexity measure: dimension of space of partial derivatives.

I Remark [Ben-Or]: Homogeneity assumption is necessary.

I Recent progress:
shifted partial derivatives (Neeraj Kayal 2012 + many others).
Arbitrary constant depth (Limaye, Srinivasan, Tavenas,
June 2021).

How far to general (unbounded depth) circuit lower bounds?
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Reduction to depth 4

Theorem [Agrawal-Vinay’08,Koiran’12,Tavenas’13]:
Let C (x1, . . . , xn) be a circuit of degree d and size s,
where d , s = nO(1).
There is an equivalent depth 4 circuit of size nO(

√
n).

I By shifted partials, this is essentially optimal
[Fournier,Limaye,Malod,Srinivasan’15].

I Also, reduction to depth 3
[Gupta, Kamath, Kayal, Saptharishi’13].

Does not preserve homogeneity.

Wanted: nω(
√
n) lower bound for circuits of depth 3 or 4....

But we are currently stuck!
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The Real τ -Conjecture

Conjecture: Consider f (X ) =
∑k

i=1

∏m
j=1 fij(X ),

where the fij are t-sparse.
If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then VP 6= VNP.
Remarks:

I The expression for f is a univariate circuit of depth 4.

I Case k = 1 of the conjecture follows from Descartes’ rule
(t monomials ⇒ at most 2t − 1 real roots).

I By expanding the products, f has at most 2ktm − 1 zeros.

I k = 2 is open. A take-home problem:
how many real roots for fg + 1? Descartes’ bound is O(t2)
but true bound could be O(t).
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(t monomials ⇒ at most 2t − 1 real roots).

I By expanding the products, f has at most 2ktm − 1 zeros.

I k = 2 is open. A take-home problem:
how many real roots for fg + 1? Descartes’ bound is O(t2)
but true bound could be O(t).



Real τ -Conjecture ⇒ VP 6= VNP

Very rough proof sketch:

1. Start with polynomial with many real roots such as:
f (X ) =

∏2n

i=1(X − i).

2. Assuming VP = VNP, reduce it to depth 4:
f (X ) =

∑k
i=1

∏m
j=1 fij(X ),

where the fij are t-sparse, and k ,m, t = 2o(n).

3. This is a contradiction with the real τ -conjecture.



τ -conjecture for Newton polygons

I Newton polygon for f (X ,Y ) = 1 + 2X 3Y + XY 2 + XY 3:

•
•

•
•

I Real roots of f (X ) replaced by Newton polygons of f (X ,Y ).

I Similar conjecture with similar consequences
(K., Portier, Tavenas, Thomassé’15).

I The real τ -conjecture implies the τ -conjecture for Newton
polygons (Hrubes’19).

I Nontrivial O(t4/3) bound for size (number of vertices)
of the Newton polygon of f (X ,Y )g(X ,Y ) + 1.



A drastic simplification:
Lower bounds for univariate polynomials

Model: f (x) =
∑s

i=1 pi (x)ei where deg(pi ) is small (say, ≤ 2).

Lower bound theorem [Kayal, Koiran, Pecatte, Saha’15]:
s = Ω(

√
d) for the degree d polynomials

√
d/2∑

i=1

(x − ai )
d and [(x − a1)(x − a2)]d/2

where the ai are distinct.

I Wanted: s = Ω(d) for some explicit family of polynomials.

I This is open even for deg(pi ) = 1!

I How can we possibly shrink that model??



A drastic simplification:
Lower bounds for univariate polynomials

Model: f (x) =
∑s

i=1 pi (x)ei where deg(pi ) is small (say, ≤ 2).

Lower bound theorem [Kayal, Koiran, Pecatte, Saha’15]:
s = Ω(

√
d) for the degree d polynomials

√
d/2∑

i=1

(x − ai )
d and [(x − a1)(x − a2)]d/2

where the ai are distinct.

I Wanted: s = Ω(d) for some explicit family of polynomials.

I This is open even for deg(pi ) = 1!

I How can we possibly shrink that model??



A drastic simplification:
Lower bounds for univariate polynomials

Model: f (x) =
∑s

i=1 pi (x)ei where deg(pi ) is small (say, ≤ 2).

Lower bound theorem [Kayal, Koiran, Pecatte, Saha’15]:
s = Ω(

√
d) for the degree d polynomials

√
d/2∑

i=1

(x − ai )
d and [(x − a1)(x − a2)]d/2

where the ai are distinct.

I Wanted: s = Ω(d) for some explicit family of polynomials.

I This is open even for deg(pi ) = 1!

I How can we possibly shrink that model??



A drastic simplification:
Lower bounds for univariate polynomials

Model: f (x) =
∑s

i=1 pi (x)ei where deg(pi ) is small (say, ≤ 2).

Lower bound theorem [Kayal, Koiran, Pecatte, Saha’15]:
s = Ω(

√
d) for the degree d polynomials

√
d/2∑

i=1

(x − ai )
d and [(x − a1)(x − a2)]d/2

where the ai are distinct.

I Wanted: s = Ω(d) for some explicit family of polynomials.

I This is open even for deg(pi ) = 1!

I How can we possibly shrink that model??



Shrinking the field:
sums of powers of real affine functions

Model: f (x) =
s∑

i=1

αi (x − ai )
ei where ai , αi ∈ R.

Lower bound theorem [Garcia-Marco, Koiran’17]:
s = Ω(d) for the degree d polynomials

H1(x) = (x + 1)d+1 − xd+1,H2(x) =

d/4∑
i=1

αi (x − ai )
d

where αi 6= 0 and the ai are distinct (and ei ≤ d for H1).

I Proof by Birkhoff interpolation.

I What about the complex field?



Sums of powers of complex affine functions

Open problem: Lower bound better than Ω(
√
d) in the model

f (x) =
s∑

i=1

αi (x − ai )
ei

over the field of complex numbers for some explicit polynomial.

I An upper bound: If ξ is a primitive k-th root of unity,

k∑
j=1

ξj(x + ξj)d =
∑

i≡−1 (mod k)
0≤i≤d

k

(
d

i

)
xd−i .

I Rules out H2(x) =
∑k

i=1 αi (x − ai )
d as “hard polynomial”

if ai , αi ∈ C may be arbitrary.

I H1(x) = (x + 1)d+1 − xd+1 may still be hard.



Small degree: sums of cubes of linear forms

f (x1, . . . , xN) =
r∑

i=1

`i (x1, . . . , xN)3

I Smallest possible r is the symmetric tensor rank of f
(also known as Waring rank).

I It’s Θ(N2) for generic f ; exact value known for any degree
(Alexander-Hirschowitz theorem).

I Longstanding open problem (Strassen?):
find explicit f with superlinear (symmetric) tensor rank.

I As a plausible candidate we have
the matrix multiplication tensor (N = 3n2):

f =
n∑

i ,j ,k=1

XijYjkZki .
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