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Multioperations

Let A be the set, n > 0.
n-ary multioperation - f : An → 2A.
|A| = k - rank multioperation,
n - dimension multioperation.
Mn

A,MA - sets of n-ary and all multioperations over A;

multioperations f ∈ MA, where A = {1, 2} can be represented as
mapping

f : {1, 2}n → {0, 1, 2, 3},
using the following encoding

{∅} → 0; {1} → 1; {2} → 2; {1, 2} → 3
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Setting multioperations

f = (α1, ..., α2n) vector form n-ary f , where αi ∈ {0, 1, 2, 3} and
αi = f (2i1 , ..., 2in), but (i1, ..., in) is the representation of i − 1 base 2
n-digit number;
n-ary empty multioperation
0n(a1, ..., an) = ∅;
n-ary full multioperation
πn(a1, ..., an) = A;
n-ary multioperation projection on i argument
eni (a1, ..., an) = ai ;
binary intersection multioperation
f∩(a, b) = {a} ∩ {b};
examples of rank 2:
03 = (00000000), π3 = (33333333)
e3
1 = (11112222), e3

2 = (11221122), e3
3 = (12121212);
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Metaoperations: solvability, intersection and composition

solvability f on to the i argument
(µi f )(a1, ..., an) = {a|ai ∈ f (a1, ..., ai−1, a, ai+1, ..., an)}.

intersection
(f ∩ g)(a1, ..., an) = f (a1, ..., an) ∩ g(a1, ..., an).

composition multioperations f ∈ Mn
A и f1, ..., fn ∈ Mm

A

f (f ∗ f1, ..., fn)(a1, ..., am) =
⋃

bi∈fi (a1,...,am)

f (b1, ..., bn)
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Purpose of the study

Peryazev N. A. Sharankhaev I. K.
In the theory of multioperations the superassociativity identity does not
hold, but only the semi-superassociativity identity is true.

Question
How different are the closed sets of simple and generalized terms for
different dimensions and ranks?
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Generalized and simple terms

Let S = {m1, ...,ms} be a signature, that is, it is a set of functional
symbols with a fixed dimension. e1, ..., en ∈ S

Generalized term
1 if m ∈ S , then m is generalized term
2 if t0, t1, ..., tm is generalized terms, then expression (t0 ∗ t1, ..., tm) is

generalized term
3 if t0 is generalized term, then µ1,...,n(t0) is generalized term

If t0 ∈ S is obligatory, then this is definition of a simple term.

Generalized and simple closure
When defining the closure of a set of multioperations using generalized
terms, a generalized closure is obtained, and using simple terms, a simple
closure is obtained.
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Results

During the research, the following closed sets of simple and generalized
terms were obtained and considered:

Rank 2:
1 All closed sets of unary and binary multioperations
2 Part of closed sets of ternary multioperations

Rank 3:
1 All closed sets of unary multioperations
2 Part of closed sets of binary multioperations

Rank 4:
1 Part of closed sets of binary multioperations
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Results for ranks 3 and 4

Rank 3

Generative multioperation Simple terms Generalized terms
(135 320 504) 80 83
(130 326 064) 80 83
(105 026 564) 80 83

Rank 4

Generative multioperation Simple terms Generalized terms
(1359 3200 5040 9008) 81 84
(1300 32610 0640 01008) 81 84
(1050 0260 56412 00128) 81 84

(1009 02010 00412 910128) 81 84
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Results for ranks 3 and 4

Rank 3
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1)))) = (711272447)
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1)))) = (724174127)
(µ1(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1))))) = (135326564)
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Results for ranks 3 and 4

Rank 4
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1)))) = (15111215224415488815)
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1)))) = (15248115481215812415)
(µ1(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ1((µ1(m1)) ∗ (µ2(m1))(µ1(m1))))∗
(µ2((µ1(m1)) ∗ (µ1(m1))(µ2(m1))))) = (13593261056412910128)
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Results

Theorem
For all ranks over 2, there is a multioperation for which the simple closure
is a own subset of the generalized closure.

Hypothesis
For any set of multioperations of rank 2, its simple and generalized closures
coincide.
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