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Ranks for families of theories

Let X be a language. If X is relational we denote by 75 the family
of all theories of the language Y. If ¥ contains functional symbols
then 75 is the family of all theories of the language ¥/, which is
obtained by replacements of all n-ary symbols f with (n + 1)-ary
predicate symbols Ry interpreted by Rr = {(3, b) | f(3) = b}.

By F(X) we denote the set of all formulas in the language ¥ and
by Sent(X) the set of all sentences in F(X).

For a sentence ¢ € Sent(X) we denote by 7, the set of all theories
TeTwthpeT.
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Ranks for families of theories

Any set 7, is called the @-neighbourhood, or simply a
neighbourhood, for T, or the (y-)definable subset of 7. The set 7,
is also called (formula- or sentence-)definable (by the sentence ¢)
with respect to 7, or (sentence-)T -definable, or simply s-definable.
We define the rank RS(-) for families 7 C 75, similar to Morley
rank for a fixed theory, and a hierarchy with respect to these ranks
in the following way.
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Ranks for families of theories

Definition!. For the empty family 7" we put the rank

RS(7) = —1, for finite nonempty families 7 we put RS(7) = 0,
and for infinite families 7 — RS(7) > 1.

For a family 7 and an ordinal & = 8+ 1 we put RS(7") > «a if
there are pairwise inconsistent ¥ (7 )-sentences ¢,, n € w, such
that RS(7,,) > 0, n € w.

If o is a limit ordinal then RS(7") > a if RS(7) > (5 for any < a.
We set RS(7) = a if RS(7) > aand RS(7) # a + 1.

If RS(7) > « for any «, we put RS(7) = oc.

!Sudoplatov S. V. Ranks for families of theories and their spectra //
Lobachevskii Journal of Mathematics (to appear). arXiv:1901.08464v1
[math.LO]. — 2019. — 17 p.
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Totally transcendental families

A family 7 is called e-totally transcendental, or totally
transcendental, if RS(7) is an ordinal.

If 7 is e-totally transcendental, with RS(7) = a > 0, we define
the degree ds(7) of T as the maximal number of pairwise
inconsistent sentences ; such that RS(7,,) = a.

S.V. Sudoplatov CHARACTERISTICS FOR FAMILIES OF THEORIES



e-minimal families

Definition?. An infinite family 7 is called e-minimal if for any
sentence ¢ € X(7), 7, is finite or 7, is finite.

By the definition a family 7 is e-minimal iff RS(7) = 1 and
ds(7) =1, and iff 7 has unique accumulation point.

2Sudoplatov S. V. Approximations of theories // Siberian Electronic
Mathematical Reports. — 2020. — Vol. 17. — P. 715-725.
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E-closures

In the paper [Sudoplatov S. V. Closures and generating sets related
to combinations of structures / S. V. Sudoplatov // Bulletin of
Irkutsk State University. Series “Mathematics’. — 2016. —

Vol. 16. — P. 131-144.] the notion of E-closure was introduced and
characterized as follows:

Proposition 1

If 7 C 75 is an infinite set and T € 7y \ 7 then T € Clg(7) (i.e.,
T is an accumulation point for 7 with respect to E-closure Clg) if
and only if for any sentence ¢ € T the set 7, is infinite.
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e-totally transcendental families in countable languages®

The following theorem characterizes the property of e-total
transcendency for countable languages.

Theorem 1

For any family 7 with |X(7)| < w the following conditions are
equivalent:

(1) [Cle(T)] = 2

@) eSp(1) =2

(3) RS(7) =
(4)

4) there exists a 2 tree of sentences ¢ for s-definable properties 7.

v

3Sudoplatov S. V. Ranks for families of theories and their spectra //
Lobachevskii Journal of Mathematics (to appear). arXiv:1901.08464v1
[math.LO]. — 2019. — 17 p.

“Pavlyuk In. I., Sudoplatov S. V. Formulas and properties for families of
theories of Abelian groups // Bulletin of Irkutsk State University. Series
Mathematics. — 2021. — Vol. 36.
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Ranks for families of theories®

For any language X either RS(7x) is finite, if X consists of finitely
many 0-ary and unary predicates, and finitely many constant
symbols, or RS(75) = oo, otherwise.

5Markhabatov N. D., Sudoplatov S. V. Ranks for families of all theories of
given languages // Eurasian Mathematical Journal. —220215— Vol. 12,=No. 2.
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Ranks for families of theories®

For a language ¥ we denote by 75 , the family of all theories in 75
having n-element models, n € w, as well as by 75  the family of
all theories in 7y having infinite models.

For any language ¥ either RS(7x ,) = 0, if X is finite or n =1 and
Y has finitely many predicate symbols, or RS(7x ,) = o0,
otherwise.

For any language ¥ either RS(7x o) is finite, if X is finite and
without predicate symbols of arities m > 2 as well as without
functional symbols of arities n > 1, or RS(7x o) = 00, otherwise.

v

5Markhabatov N. D., Sudoplatov S. V. Ranks for families of all theories of
given languages // Eurasian Mathematical Journal. —220215— Vol.. 12,=No. 2.
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Ranks for families of theories

For any language X either either 75 is countable, if if X consists of
finitely many 0-ary and unary predicates, and finitely many constant
symbols, or |7x| > 2%, otherwise.

Proposition 3

For any language X either 75 , is finite, if X is finite or n =1 and
Y has finitely many predicate symbols, or |75 ,| > 2, otherwise.

4

Proposition 4

For any language X either 75  is at most countable, if X is finite
and without predicate symbols of arities m > 2 as well as without
functional symbols of arities n > 1, or |73 | > 2%, otherwise.
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Definable subfamilies’

Definition. If 7 is a family of theories and @ is a set of sentences,

then we put 7o = () 7, and the set 7Ty is called (type-) or

ped
(diagram-)definable (by the set ®) with respect to 7, or
(diagram-)T -definable, or simply d-definable.
Clearly, finite unions of d-definable sets are again d-definable.
Considering infinite unions 7" of d-definable sets To,, i € /, one can
represent them by sets of sentences with infinite disjunctions \/ ¢;,

iel

;i € ®;. We call these unions 7" are called d..-definable sets.

"Markhabatov N. D., Sudoplatov S. V. Definable subfamilies of theories,
related calculi and ranks // Siberian Electronic Mathematical Reports. —
2020. — Vol. 17. — P. 700-714.
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Definable subfamilies®

Definition. Let 7 be a family of theories, ® be a set of sentences,

a be an ordinal < RS(7) or —1. The set ¢ is called a-ranking for

7 if RS(7¢) = a. A sentence ¢ is called a-ranking for T if {¢} is

a-ranking for T .

The set ® (the sentence o) is called ranking for 7T if it is a-ranking
for 7 with some a.

8Markhabatov N. D., Sudoplatov S. V. Definable subfamilies of theories,
related calculi and ranks // Siberian Electronic Mathematical Reports. —
2020. — Vol. 17. — P. 700-714.

S.V. Sudoplatov CHARACTERISTICS FOR FAMILIES OF THEORIES



Definable subfamilies and ranks®

For any ordinals a < 3, if RS(7") = 3 then RS(7,) = « for some
(a-ranking) sentence ¢. Moreover, there are ds(7) pairwise

T-inconsistent (-ranking sentences for 7, and if « < 3 then there
are infinitely many pairwise 7 -inconsistent a-ranking sentences for

7.

Let 7 be a family of a countable language ¥ and with RS(7) = oo,
« be a countable ordinal, n € w\ {0}. Then there is a d-definable
subfamily 7* C 7 such that RS(7™*) = « and ds(7*) = n.

v

9Markhabatov N. D., Sudoplatov S. V. Definable subfamilies of theories,
related calculi and ranks // Siberian Electronic Mathematical Reports. —
2020. — Vol. 17. — P. 700-714.
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Separability of closures

Theorem 6

For any two disjoint subfamilies 7; and 75 of an E-closed family 7
the following conditions are equivalent:

(1) 71 and 75 are separated by some sentence ¢: 7; C 7, and

T C T,

(2) E-closures of 7; and 73 are disjoint in 7

Cle(T1) NClg(T)NT = 0;

(3) E-closures of 77 and 75 are disjoint: Clg(771) N Clg(72) = 0.

105udoplatov S. V. Hierarchy of families of theories and their rank
characteristics // Bulletin of Irkutsk State University. Series Mathematics. —
2020. — Vol. 33. — P. 80-95.
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Generating sets'!

Definition. Let 7 be a family of theories. A subset 7] C 7y is said
to be generating if 7o = Clg(7Z). The generating set 7 (for 7p) is
minimal if 7, does not contain proper generating subsets. A
minimal generating set 7 is least if 7 is contained in each
generating set for 7p.

1sudoplatov S. V. Closures and generating sets related to combinations of
structures // Bulletin of Irkutsk State University. Series Mathematics. —
2016. — Vol. 16. — P. 131-144.
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Generating sets'?

If 75 is a generating set for a E-closed set 7g then the following
conditions are equivalent:

(1) 74 is the least generating set for 7Tp;

(2) 74 is a minimal generating set for 7To;

(3) any theory in 7y is isolated by some set (7)), i.e., for any
T € 74 there is ¢ € T such that (7j), = {T};

(4) any theory in 7 is isolated by some set (7o), i.e., for any
T € 7 thereis ¢ € T such that (7p), = {T}.

125doplatov S. V. Closures and generating sets related to combinations of
structures // Bulletin of Irkutsk State University. Series Mathematics. —
2016. — Vol. 16. — P. 131-144.
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Semantic and syntactic properties, their links with formulas

Definition. Let X be a language, ¢ = ¢(X) be a formula in F(X),
Ps be a subclass of the class K(X) of all structures A in the
language . We say that ¢(X) partially (respectively, totally)
satisfies Ps, denoted by ¢ > Ps or ¢ >3 Ps (¢ >t Ps or o> Ps),
if there are A € P and 3 € A (for any A € Ps there is 3 € A) such
that A = ¢(3a).
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Semantic and syntactic properties, their links with formulas

If Pis is a subclass of the class ITK(X) of isomorphism types for
the class K(X) then we say that ¢(X) partially (respectively,
totally) satisfies Pis, denoted by ¢ D>pits Pits oF ¢ Diats Pits

( Dtits Pits or @ D}’ts Pits) if ¢ D>ps Ps (¢ >ts Ps, where P consists
of all structures whose isomorphism types belong to Pi. If P; is a
subset of the set 7y of all complete theories in the language ¥ then
we say that ¢(x) partially (respectively, totally) satisfies P,
denoted by ¢ >p Py or ¢ [>§' P: (¢ >4t P: or @ >¥ Py), if there are
TeP, ME=T,andae M (forany T € P; thereare M =T
and 3 € M) such that M = ¢(3).
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Semantic and syntactic properties, their links with formulas

For a property Ps we denote by ITK(P;s) the class of isomorphism
types for structures in Ps, and by Th(Ps) the set

{T €Tz | A= T for some A € Ps}. For a property Pits we denote
by K(Pis) the class of all structures whose isomorphism types are
represented in Py, and by Th(Pis) the set Th(K(Pis)). For a
property P; we denote by K(P;) the class of all models of theories
in P¢, and by ITK(P;) the class ITK(K(P;)).
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Semantic and syntactic properties, their links with formulas

Proposition 6

For any formula ¢ € F(X) and properties Ps, Pits, P: the following
conditions hold:

(1) @ >ps Ps iff @ Dpits ITK(Ps), and iff ¢ >p¢ Th(Ps);

(2) @ s Ps iff @ >iigs ITK(Ps), and iff ¢ >, Th(Ps);

(3) ¢ D>pits Pits iff ¢ >ps K(Pits), and iff ¢ >p¢ Th(Pits);

(4) ¢ >its Pits Iff @ >ts K(Pis), and iff @ > Th(Pits);
(5) @ >pt P iff o >ps K(Pe), and iff ¢ D>pigs ITK(Py);
(6) @ >t Pr iff o s K(Pyt), and iff o Dyigs ITK(Py).
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Semantic and syntactic properties, their links with formulas

In the items (3) and (4) the class K(Pis) can be replaced by a
subclass K’ such that ITK(K’) = Pys. Similarly, in the items (5)
and (6) the class K(P;) can be replaced by a subclass K’ such that
Th(K’) = P¢, and independently ITK(P;) can be replaced by a
subclass K” such that Th(K") = P;.
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Semantic and syntactic properties, their links with formulas

By Proposition 6 semantic properties Ps and Pits can be naturally
transformed into syntactic ones P;, and vice versa. It means that
natural model-theoretic properties such as w-categoricity, stability,
simplicity etc. can be formulated both for theories, for structures
and for their isomorphism types. The links between t>-relations
which pointed out in Proposition 6 allow to reduce our
consideration to the relations >, and >. Besides, for the
simplicity we will principally consider sentences ¢ instead of
formulas in general. Reductions of formulas 1(X) to sentences use
the operators ¥ (X) — Vx1(X) and ¥(Xx) — Ix (X).
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Formulas, properties and E-closures

Theorem 8

For any sentence ¢ € Sent(X) and a property P; C 7Ty the
following conditions are equivalent:

(1) o >pt Pe

(2) ¢ >pi Cle(Py),

(3) ¢ >pt Py for any/some P, with Clg(P;) = Clg(Ps).
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Formulas, properties and E-closures

Theorem 9

For any sentence ¢ € Sent(X) and a property Py C 7Ty the
following conditions are equivalent:

(1) >t P,

(2) ¢ it Cle(Pe),

(3) ¢ >4 P; for any/some P; with Clg(P;) = Clg(Py).
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Corollaries

Corollary 1

For any properties Py, P, C 75 the following conditions hold:

(1) there exists ¢ € Sent(X) such that ¢ >t P1 and — >y Po iff
P1 and P, are nonempty and |P; U P,| > 2; in particular, there
exists ¢ € Sent(X) such that ¢ >p¢ P1 and = >y Pr iff |P1] > 2;
(2) there exists ¢ € Sent(X) such that ¢ > P1 and —p >y P iff
ClE(Pl) N CIE(PQ) = (.
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Corollaries

Corollary 2

For any nonempty property P; C 75 the following conditions hold:
(1) the set [ P; forms a filter (| P:/= on {=(¢) | ¢ € Sent(X)}
with respect to F;

(2) the filter () Pt/= is principal iff (] P; is forced by some its
sentence, i.e., [| P is a finitely axiomatizable theory, which is
incomplete for |P;| > 2;

(3) the filter () P¢/= is an ultrafilter iff P; is a singleton.
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Ranks and spectra for sentences and properties

Definition. For a sentence ¢ € Sent(X) and a property

P = P; C 75 we put RSp(y) = RS(P,), and dsp(y) = ds(P,) if
ds(P,) is defined.

If P = 75 then we omit P and write RS(y), ds(¢) instead of
RSp(p) and dsp(p), respectively.
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Ranks and spectra for sentences and properties

Definition. For a sentence ¢ € Sent(X) and a property P C 75 we
say that ¢ is P-totally transcendental if RSp(¢) is an ordinal.

A sentence ¢ is co-(P)-totally transcendental if —p is P-totally
transcendental.

We omit P and say about totally transcendental and co-totally
transcendental sentences if P = 75.

Theorem 10

For a language ¥ there is a totally transcendental sentence
¢ € Sent(X) iff £ has finitely many predicate symbols.
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Ranks and spectra for sentences and properties

Definition. For a language X, a property P C 75, an ordinal « and
a natural number n > 1, a sentence ¢ € Sent(X) is called

(P, a, n)-(co-)rich if RSp(¢) = e and dsp(¢) = n (respectively,
RSp(—¢) = a and dsp(—p) = n).

A sentence ¢ € Sent(X) is called (P, 00)-(co-)rich if RSp(p) = 0o
(respectively, RSp(—¢p) = o).

If P =75 we write that ¢ is («, n)-(co-)rich instead of

(P, , n)-(co-)rich, and oo-(co-)rich instead of (P, 00)-(co-)rich.

If for a property P there is a (P, *)-(co-)rich sentence ¢, we say
that P has a (P, *x)-(co-)rich sentence, where x = a;, n or a = 0.
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Ranks and spectra for sentences and properties

Theorem 11

(1) If a property P C 75 has a (P, «, m)-rich sentence ¢ which is
(P, 3, n)-co-rich then RS(P) = max{a, 8}, ds(P) = m for a > 3,
ds(P) = n for o < 3, and ds(P) = m+ n for a = §3.

(2) If for a property P C 75, RS(P) = « and ds(P) = n, then for
each sentence ¢ € Sent(X) the following assertions hold:

(i) RSp(%) < o,

(ii) if RSp(¢) = « then ¢ is (P, a, m)-rich for some m < n, and
for m = n either p >4 P or ¢ is (P, 3, k)-co-rich for some 3 < «
and k € w, and if m < n then ¢ is (P, a, n — m)-co-rich.
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Ranks and spectra for sentences and properties

By Theorem 11 for any e-totally transcendental property P and any
a < RS(P) there are s-definable subfamilies P, with RS(P,) = a.
Similarly all values m < ds(P) are also realized by appropriate
s-definable subfamilies.

Thus the spectrum Sprq(P) for the pairs (RSp(¢), dsp(p)) with
nonempty P, forms the set

{(RS(P),m) |1 < m <ds(P)}U{(ar, m) | @« < RS(P), m € w\{0}},
which is an initial segment O[(/3, n)] consisting of all pairs

(a,m) € Ord x (w\ 0) with &« < 3 and m < n for a = §3,
RS(P) = 3, ds(P) = n.
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Ranks and spectra for sentences and properties

Theorem 12

For any nonempty property P C 75 one of the following
possibilities holds for some 8 € Ord and n € w\ {0}:

(1) Spra(P) = O[(8, n)],

(2) Spra(P) = {oo},

(3) Spra(P) = O[(8, m)] U {oo}.

All possibilities above are realized by appropriate languages ¥ and
properties P C Ty.
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Ranks and spectra for sentences and properties

The following theorem is shown in: Markhabatov N. D., Sudoplatov
S. V. Ranks for families of all theories of given languages //
Eurasian Mathematical Journal. — 2021. — Vol. 12, No. 2.

Let 7 be a family of a countable language ¥ and with RS(7) = oo,
« be a countable ordinal, n € w\ {0}. Then there is a d-definable
subfamily 7* C 7 such that RS(7*) = o and ds(7*) = n.

The latter two Theorems immediately imply:

Let 7 be a family of a countable language X and with
RS(7) = 0o, a be a countable ordinal, n € w\ {0}. Then there is
a duo-definable property P C T such that Sprq(P) = O|[(«, n)].
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Links between sentences and properties

For a cardinality A > 1, a sentence ¢ € Sent(X) and a property

P C Ty we write ¢ Dgt P if ¢ satisfies exactly A theories in P, i.e.,
‘P<p| =A

By the definition if P # () and ¢ > P then ¢ DL’:‘ P, and
conversely ¢ DL’E' P implies ¢ > P for finite P. For infinite P the
converse implication can fail. Moreover, since infinite sets can be
divided into two parts of same cardinality, one can easily introduce

an expansion P’ of P by a 0O-ary predicate @ such that Q DLF:‘ P’
and =@ DL’?' P’, implying that Q /¢ P’.
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Spectra for properties

For a property P we denote by Sp;(P) the set {\ | ¢ Df,‘t P for
some sentence ¢}. This set is called the pt-spectrum of P.

Theorem 14

For any nonempty property P C 75 one of the following conditions
holds:

(1) Spye(P) = (n+ 1)\ {0} for some n € w\ {0}; it is satisfied iff
P is finite with |P| = n;

(2) Sppe(P) = YU (n+1)\ {0} for some nonempty set Y C |P| of
infinite cardinalities and n € w \ {0};

(3) Spye(P) = Y Uw\ {0} for some nonempty set Y C |P| of
infinite cardinalities;

(4) Spy(P) = Y for some nonempty set Y C |P| of infinite
cardinalities.

All values (n+1)\ {0}, YU (n+1)\ {0}, YUw\ {0}, and Y, for
a nonempty set Y of infinite cardinalities and n € w \ {0}, are
realized as Sp,,;(P) for an appropriate property P.
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Spectra for properties

Theorem 15

For any nonempty E-closed property P C 75 with at most
countable language X one of the following possibilities holds:
(1) Sppt(P) = (n+1) \ {0} for some n € w\ {0}, if P is finite
with |P| = n;

(2) Sppt(P) = {2*} U (n+ 1) \ {0} for some n € w, if P is infinite
and has n isolated points;

(3) Sppe(P) = (w+ 1)\ {0}, if P is infinite and totally
transcendental;

(4) Sppe(P) = {w,2“} Uw \ {0}, if P has an infinite totally
transcendental definable subfamily but P itself is not totally
transcendental;

(5) Sppt(P) = {2*} Uw \ {0}, if P has infinitely many isolated
points but does not have infinite totally transcendental definable
subfamilies.

v
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Generic sentences

Definition. (Cf. 13) For a property P C 75 a sentence

¢ € Sent(X) is called P-generic if RSp(p) = RS(P), and
dsp(p) = ds(P) if ds(P) is defined.

If P =75 then we omit P and a P-generic sentence is called
generic.

3Poizat, B. Groupes Stables. Nur Al-Mantiq Wal-Ma'rifah: Villeurbanne,
France 1987. Truss, J.K. Generic Automorphisms of Homogeneous Structures
// Proceedings of the London Mathematical Society. 1992, 65:3, 121-141.
Tent, K., Ziegler, M. A Course in Model Theory // Lecture Notes in Logic. No.
40. Cambridge University Press: Cambridge, UK, 2012.

S.V. Sudoplatov CHARACTERISTICS FOR FAMILIES OF THEORIES



Generic sentences

Any P-generic sentence ¢ is (P,RS(P), ds(P))-rich if RS(P) is an
ordinal, and (P, co)-rich if RS(P) = oo. And vice versa, each
(P,RS(P), ds(P))-rich sentence, for an ordinal RS(P), is
P-generic, and each (P, co)-rich sentence, for RS(P) = oo, is
P-generic.

Corollary 4

If a property P C 75 is finite and ¢ € Sent(X) then ¢ > P iff ¢ is
P-generic.

4
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Generic sentences

For a property P C 7y there is a P-generic sentence ¢ € Sent(X)
with minimal/least P, iff P is finite. If that ¢ exists then P, = P.

Corollary 5

For any property P C 75 with RS(P) = a € Ord and any sentence
@ € Sent(X) either ¢ is P-generic or - is P-generic, or, for
ds(P) > 1 with non-P-generic ¢ and =y, ¢ is represented as a
disjunction of k (P, «, 1)-rich sentences and —¢ is represented as a
disjunction of m (P, «, 1)-rich sentences such that kK + m = ds(P),
k>0, m>0.
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Generic sentences

Theorem 16

(1) For any nonempty property P C 75 there are ds(P) P-generic
theories if P is totally transcendental, and at least continuum many
if P is not totally transcendental. In the latter case either all
theories in P are P-generic if Sprq(P) = {oo}, or P has at least

B - w + n non-P-generic theories if Spry(P) = O[(5, n)] U {oc}.
(2) The CB-rank of each P-generic theory equals RS(P).
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Generic sentences

Definition. For a property P C 75 a sentence ¢ € Sent(X) is
called P-complete if ¢ isolates a unique theory T in P, i.e., P, is a
singleton. In such a case the theory T € P, is called P-finitely
axiomatizable (by the sentence ).

Proposition 9

For any nonempty property P C 7y a P-finitely axiomatizable
theory T is P-generic iff P is finite.

The obtained results are published in: Sudoplatov S.V. Formulas
and Properties, Their Links and Characteristics // Mathematics.
2021, Vol. 9, Issue 12. 1391.
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