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Metrically A 7
homogeneous Mini-colloque organisé par le Laboratoire LMDI de

graphs I'Université Claude Bernard (Lyon-1), avec le concours du
CRTT (Lyon-2).

Distance

semigroups

Dates : du jeudi 8 au samedi 10 décembre 199%4.
Lieu : campus de la Doua, bat. 101, Villeurbanne.

Organisateurs : Fabrizio PENNACCHIETTI (Torino),
Bruno POIZAT (Karaganda, Lyon).
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Welcome home, Tuna—June 11, 2021
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Azat Miftakhov Day Conference (June 16, 2021).
https://caseazatmiftakhov.org/2021/05/13/
the-azat-miftakhov-day/

Introduction: Cédric Villani

Lectures by Maryna Viazovska, Alexander Bufetov, Peter
Scholze, and words of support

Concluding remarks: llya Kapovich


https://caseazatmiftakhov.org/2021/05/13/the-azat-miftakhov-day/
https://caseazatmiftakhov.org/2021/05/13/the-azat-miftakhov-day/
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n-point homogeneity

Metrically

Meesbme | ocal congruence (isometry) = global congruence (rigid
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SR Urysohn 1924, Birkhoff 1944, Fraissé 1953, Freudenthal 1957

Postulate III is not to be confused with the frequently stated weaker con-
dition: “If M and N are isometric sets, then there exists a self-isometry of
T EEsE space which carries M into N.” It should also be distinguished from the
metric spaces n-point homogeneity condition: “Any isometry between two sets of 7 or fewer
points can be extended to a self-isometry of space.” Thus Hilbert space has
n-point homogeneity for every finite order n, yet does not satisfy the free
mobility postulate; the same is true of Urysohn space (P. Urysohn, Sur un
espace métrique universel, Bull. Sci. Math. vol. 51 (1927) pp. 43-64, 74-90).

Birkhoff 1944: Metric Foundations of Geometry

n-point homogeneity: displacement of rigid bodies
2-point homogeneity: displacement of rulers
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Compact: Wang 1951
Locally compact: Tits 1952 (Freudenthal 1957)
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ereeen Complete geodesic 2-point homogeneous spaces.
Compact: Wang 1951
Locally compact: Tits 1952 (Freudenthal 1957)

Homogeneous
metric spaces

Full classification for n-point homogeneous complete separable
geodesic spaces?

A discrete analog ...
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The discrete setting
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metric)
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The discrete setting
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Homogeneous
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Semigroups Integral metric spaces.
: Geodesic paths.

2-point homogeneous: distance transitive graphs (with path
metric)
n-point homogeneous: metrically homogeneous graphs

Metrically
homogeneous
p—_ n-gons
Icosahedron skeleton

Regular trees; the tree-like graphs T, 5

(Dugald Macpherson)
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The graphs T,,,

Metrically

Each point lies in a bouquet of m cliques of order n; no other
Homogeneous
Graphs and Cycles_
Distance
Semigroups

CONSTRUCTION

Semi-regular tree with degrees m,n (2 < m,n < o)
Homogeneous as a bipartite graph with path metric.

Each part is a metrically homogeneous graph with rescaled
metric (1/2): Ty and T, ;.

Metrically
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The known metrically homogeneous graphs

e Finite (Cameron, 1980)

Metrically @ Macpherson’s graphs T, 5

homogeneous

graphs o Fraissé limits lim A3 N Ay
%



Fraissé Constructions

Metrically - ”
e Remark (Fraissé)

Graphs and ) X
Distance Countable homogeneous metric spaces are determined up to

Semigroups
. isometry by their finite subspaces; equivalently, by their
forbidden subspaces.

A

The Fraissé limit of the class of graphs is the random graph.
Metrically The Fraissé limit of the class of integral metric spaces is

homogeneous

graphs integral Urysohn space.

.

Notation (Finite combinatorics <> Model theory)
A=8ub(l); I = IiLnA

V.




Fraissé Constructions

Homeseneoss [l Notation (Finite combinatorics <+ Model theory)

Graphs and

Distance A = Sub(r), r = I[;n A

Semigroups

Definition

A metrically homogeneous graph is 3-constrained if its minimal
forbidden metric subspaces have at most 3 points.

.
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Notation (Finite combinatorics <+ Model theory)
A=Sub(l); I = lim A

.

The 3-constrained metrically homogeneous graphs are known.

Metrically They form a 5-parameter family

homogeneous
graphs

1)
I_K17K2,C0,C1

where § is the diameter, K1, K> are the least and greatest k for
which triangles of type (k, k,1) are realized, and Cy, C; bound
the perimeters of triangles of given parity.

A




Classification conjecture
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A Henson constraint for a metrically homogeneous graph of
diameter ¢ is a forbidden (1, )-space.

Conjecture (Classification)

_ The infinite metrically homogeneous graphs of diameter § are
Metrically
homogeneous the Macpherson graphs T, , and the graphs

graphs

I=lim(As3NAy)

where Az is associated with a 3-constrained graph of diameter
0 and Ay is a class determined by Henson constraints.
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G

Most of the known metrically homogeneous graphs of generic
type are characterized by a finite set of homomorphically
forbidden partial subspaces.

Hence the automorphism group has a metrizable universal
minimal flow.

Metrically
homogeneous

graphs (Exceptions: imprimitive graphs, e.g. bipartite: there are
infinitely many odd cycles to be forbidden.)




Topological dynamics
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¢ Most of the known metrically homogeneous graphs of generic
type are characterized by a finite set of homomorphically
forbidden partial subspaces.

Hence the automorphism group has a metrizable universal
minimal flow.

Metrically
homogeneous

graphs (Exceptions: imprimitive graphs, e.g. bipartite: there are
infinitely many odd cycles to be forbidden.)

The finiteness theorem involves a new theory of generalized
metric spaces with values in an appropriate commutative
semigroup.
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Generalized metric spaces
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Definition

G

Let (S, +, <) be a semigroup equipped with a partial order.
An S-valued metric space (I, d) consists of a set of points I
and a symmetric S-valued function d(x,y) defined for x # y
satisfying the triangle inequality in the form

d(x,y) 2 d(x,z) + d(y, 2)
Distance

semigroups A partial S-valued metric space is a graph with edge labels in S
which has a completion to an S-valued metric space.

V.
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Definition

Let (S, +, <) be a commutative semigroup with a partial order,
and A a finite graph with edge labels in S. The path metric on
A is the partial function d(x, y) defined for x # y as

d(x,y) = inf(||v|| |7 a path from x to y)

Distance

semigroups if this infimum exists with respect to <.




Distance semigroups
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c Definition (Tentative)

Let (S, +, <) be a commutative semigroup with a partial order
<. We say that the structure is a distance semigroup if for
every partial S-valued metric space the corresponding path
metric d(x, y) is defined for all x, y distinct.

A distance semigroup is special if the Fraissé limit of the
S-valued metric spaces exists.

Distance
semigroups

We can also define a similar notion without assuming
associativity (path weights become multi-valued).



Example: Sauer
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Let S C R be finite and define
atsb=max(seS|s<a+b)

with the usual order.

Then the S-valued metric spaces are the usual metric spaces

with values in S.
Then the following are equivalent:

Distance @ The S-valued metric spaces have a Fraissé limit.

semigroups

@ (S,+s) is a semigroup.
@ (S,+s,<) is a special distance semigroup.




Example: Braunfeld
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Example (Sam Braunfeld)

Let S be a finite lattice viewed as a semigroup with operation
V and the corresponding partial order.

Then S is certainly a distance semigroup and is special if and
only if S is distributive.

Distance
semigroups



Example: Hubi¢ka, Koneény, Nesetfil

WA Given 6, M, C with C > 25 and §/2 < M < (C —§ —1)/2

G;Zt'fnizd define D},  as follows. The underlying set is [6] = (L,...,4).
gl The addition operation i 4, c j is defined as the point in the

interval [d~, d"] closest to M, where

d”=i—j
dt =min(i+j,C—1— (i +j))

The partial order i < j is either the natural order

Distance

semigroups _j = I+M7C x for some X,

or its extension by the condition i < M —1 (i # M — 1, M)
when C = 2§ + M.

Then ([6], +m,c, <) is a distance semigroup with maximum
element M.
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Distgnce DM’C
semigroups (M 4 x= M)

“Cross-relations” not shown. E.g. 1 <pcd —1.



An application
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Semigroups If T is a primitive metrically homogeneous graph of known type
c with diameter § and C = min(Cy, C1), then for some M T
satisfies the D,‘?ﬂ c-triangle inequality

d(x,y) <m,c d(x,z) +m.c d(z,y)

and shortest path completion is a completion procedure for
finite partial subspaces of I.

Distance
semigroups



An application
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i Theorem (Prague)

Distance

Semigroups If T is a primitive metrically homogeneous graph of known type
G with diameter § and C = min(Cy, C1), then for some M T
) satisfies the D,‘?ﬂ c-triangle inequality

d(x,y) <m,c d(x,z) +m.c d(z,y)

and shortest path completion is a completion procedure for
finite partial subspaces of I.

Distance
semigroups

Ki<M<K

We take < to be the natural order unless M = K7 and
C =20+ K.



Another application
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Let I' be a primitive metrically homogeneous graph of known
type, and d > max(Kz,?2) fixed. Then the class A? of
subspaces of [ of diameter at most d has a Fraissé limit.

For the proof, if d > §/2 then shortest path completion with
respect to M = max(Ki, [0/2]) gives the claim. If d < /2

: then also K1 < ¢/2 so the first step allows us to reduce the
sDelrs:iagr;Zips diameter of ' and repeat the argument.
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Gregor

il Let [ be a primitive metrically homogeneous graph of known
type, and d > max(Kz,?2) fixed. Then the class A? of
subspaces of [ of diameter at most d has a Fraissé limit.

For the proof, if d > §/2 then shortest path completion with
respect to M = max(Ki, [0/2]) gives the claim. If d < /2

: then also K1 < ¢/2 so the first step allows us to reduce the
sDelrs:iagr;Zips diameter of ' and repeat the argument.

This leads to a projected strategy to prove the classification
theorem by a series of inductive arguments.



Toward the classification
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Graphs and Work in progress with Amato.

Distance

Semigroups [ infinite, not of the form T, ..
Gregor @ Define §, K1, K», Gy, C; and H.

Cherlin

@ Show these parameters control the triangles of ' as
expected.

@ Show the Fraissé limit I* exists.

@ It follows that any finite subspace of I' embeds
isometrically into *.

Distance
semigroups

@ Prove the converse: if A is a finite subspace of [* then A
embeds into . Proceed by induction on the diameter d of
A, for d > max(Ki,2).
As I is determined by its finite subspaces, it follows that I is
isometric to .



Problems
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@ Understand distance semigroups and special distance
semigroups. Is there a purely algebraic definition? To
what extent can the partial order be varied?

Distance
Semigroups

@ Some form of the following distributive law appears
relevant (where defined).

x +infS =inf(x + S)

@ Is associativity in fact an assumption, or a conclusion?

@ Proof of the existence of the relevant Fraissé limits
(amalgamation) is complicated. There should be a direct
proof by shortest path completion.

Distance

semigroups

@ Relate the algebra of distance semigroups to the model
theory of homogeneous binary structures in symmetric
languages.

We have mainly examples at this point.
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