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A Man of many Parts

Stable groups

Hiking and conversation
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Stability and Algebra

William Ernest Marsh: On ℵ1-categorical, not ω-categorical
theories (1966).

Zilber . . .

Groupe d’Étude de Théories Stables, 1977–1982—Bouscaren,
Chatzidakis, Pillay, et al.

Lyon-1 . . .

Welcome home, Tuna—June 11, 2021
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Azat Miftakhov

Azat Miftakhov Day Conference (June 16, 2021).
https://caseazatmiftakhov.org/2021/05/13/

the-azat-miftakhov-day/

Introduction: Cédric Villani
Lectures by Maryna Viazovska, Alexander Bufetov, Peter
Scholze, and words of support
Concluding remarks: Ilya Kapovich

https://caseazatmiftakhov.org/2021/05/13/the-azat-miftakhov-day/
https://caseazatmiftakhov.org/2021/05/13/the-azat-miftakhov-day/
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n-point homogeneity

Local congruence (isometry) = global congruence (rigid
motions)
Urysohn 1924, Birkhoff 1944, Fräıssé 1953, Freudenthal 1957

Birkhoff 1944: Metric Foundations of Geometry

n-point homogeneity: displacement of rigid bodies
2-point homogeneity: displacement of rulers
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2-Point homogeneity

Complete geodesic 2-point homogeneous spaces.
Compact: Wang 1951
Locally compact: Tits 1952 (Freudenthal 1957)

Problem

Full classification for n-point homogeneous complete separable
geodesic spaces?

A discrete analog . . .
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The discrete setting

Integral metric spaces.
Geodesic paths.
2-point homogeneous: distance transitive graphs (with path
metric)
n-point homogeneous: metrically homogeneous graphs

Examples
n-gons
Icosahedron skeleton
Regular trees; the tree-like graphs Tm,n

(Dugald Macpherson)
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The graphs Tm,n

Each point lies in a bouquet of m cliques of order n; no other
cycles.

Construction

T2,3

T3,2
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The graphs Tm,n

Each point lies in a bouquet of m cliques of order n; no other
cycles.

Construction

Semi-regular tree with degrees m, n (2 ≤ m, n ≤ ∞)
Homogeneous as a bipartite graph with path metric.

Each part is a metrically homogeneous graph with rescaled
metric (1/2): Tm,n and Tn,m.

T2,3

T3,2
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A catalog

The known metrically homogeneous graphs

Finite (Cameron, 1980)

Macpherson’s graphs Tm,n

Fräıssé limits lim
→

A3 ∩ AH
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Fräıssé Constructions

Remark (Fräıssé)

Countable homogeneous metric spaces are determined up to
isometry by their finite subspaces; equivalently, by their
forbidden subspaces.

Example

The Fräıssé limit of the class of graphs is the random graph.
The Fräıssé limit of the class of integral metric spaces is
integral Urysohn space.

Notation (Finite combinatorics ↔ Model theory)

A = Sub(Γ); Γ = lim
→

A

Theorem

The 3-constrained metrically homogeneous graphs are known.
They form a 5-parameter family

ΓδK1,K2,C0,C1

where δ is the diameter, K1,K2 are the least and greatest k for
which triangles of type (k, k, 1) are realized, and C0,C1 bound
the perimeters of triangles of given parity.
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Fräıssé Constructions

Notation (Finite combinatorics ↔ Model theory)

A = Sub(Γ); Γ = lim
→

A

Definition

A metrically homogeneous graph is 3-constrained if its minimal
forbidden metric subspaces have at most 3 points.

Theorem

The 3-constrained metrically homogeneous graphs are known.
They form a 5-parameter family

ΓδK1,K2,C0,C1

where δ is the diameter, K1,K2 are the least and greatest k for
which triangles of type (k, k, 1) are realized, and C0,C1 bound
the perimeters of triangles of given parity.
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Classification conjecture

Definition

A Henson constraint for a metrically homogeneous graph of
diameter δ is a forbidden (1, δ)-space.

Conjecture (Classification)

The infinite metrically homogeneous graphs of diameter δ are
the Macpherson graphs Tm,n and the graphs

Γ = lim(A3 ∩ AH)

where A3 is associated with a 3-constrained graph of diameter
δ and AH is a class determined by Henson constraints.
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Topological dynamics

Theorem (Prague consortium)

Most of the known metrically homogeneous graphs of generic
type are characterized by a finite set of homomorphically
forbidden partial subspaces.
Hence the automorphism group has a metrizable universal
minimal flow.

(Exceptions: imprimitive graphs, e.g. bipartite: there are
infinitely many odd cycles to be forbidden.)

The finiteness theorem involves a new theory of generalized
metric spaces with values in an appropriate commutative
semigroup.
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Generalized metric spaces

Definition

Let (S ,+,≺) be a semigroup equipped with a partial order.
An S-valued metric space (Γ, d) consists of a set of points Γ
and a symmetric S-valued function d(x , y) defined for x ̸= y
satisfying the triangle inequality in the form

d(x , y) ⪯ d(x , z) + d(y , z)

A partial S-valued metric space is a graph with edge labels in S
which has a completion to an S-valued metric space.
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Path completion

Definition

Let (S ,+,≺) be a commutative semigroup with a partial order,
and A a finite graph with edge labels in S . The path metric on
A is the partial function d(x , y) defined for x ̸= y as

d(x , y) = inf(||γ|| | γ a path from x to y)

if this infimum exists with respect to ⪯.
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Distance semigroups

Definition (Tentative)

Let (S ,+,≺) be a commutative semigroup with a partial order
≺. We say that the structure is a distance semigroup if for
every partial S-valued metric space the corresponding path
metric d(x , y) is defined for all x , y distinct.
A distance semigroup is special if the Fräıssé limit of the
S-valued metric spaces exists.

We can also define a similar notion without assuming
associativity (path weights become multi-valued).
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Example: Sauer

Example (Sauer)

Let S ⊆ R be finite and define

a+S b = max(s ∈ S | s ≤ a+ b)

with the usual order.
Then the S-valued metric spaces are the usual metric spaces
with values in S .
Then the following are equivalent:

The S-valued metric spaces have a Fräıssé limit.

(S ,+S) is a semigroup.

(S ,+S , <) is a special distance semigroup.
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Example: Braunfeld

Example (Sam Braunfeld)

Let S be a finite lattice viewed as a semigroup with operation
∨ and the corresponding partial order.
Then S is certainly a distance semigroup and is special if and
only if S is distributive.
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Example: Hubička, Konečný, Nešeťril

Given δ,M,C with C > 2δ and δ/2 ≤ M ≤ (C − δ − 1)/2
define Dδ

M,C as follows. The underlying set is [δ] = (1, . . . , δ).
The addition operation i +M,C j is defined as the point in the
interval [d−, d+] closest to M, where

d− = |i − j |
d+ = min(i + j ,C − 1− (i + j))

The partial order i ≺ j is either the natural order

j = i +M,C x for some x ,

or its extension by the condition i ≺ M − 1 (i ̸= M − 1,M)
when C = 2δ +M.
Then ([δ],+M,C ,≺) is a distance semigroup with maximum
element M.
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Dδ
M,C

1
2

M

δ

DM,C

(M + x = M)

“Cross-relations” not shown. E.g. 1 ≤M,C δ − 1.
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An application

Theorem (Prague)

If Γ is a primitive metrically homogeneous graph of known type
with diameter δ and C = min(C0,C1), then for some M Γ
satisfies the Dδ

M,C -triangle inequality

d(x , y) ≤M,C d(x , z) +M,C d(z , y)

and shortest path completion is a completion procedure for
finite partial subspaces of Γ.

K1 ≤ M ≤ K2

We take ≺ to be the natural order unless M = K1 and
C = 2δ + K1.
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Another application

Lemma

Let Γ be a primitive metrically homogeneous graph of known
type, and d ≥ max(K1, 2) fixed. Then the class Ad of
subspaces of Γ of diameter at most d has a Fräıssé limit.

For the proof, if d ≥ δ/2 then shortest path completion with
respect to M = max(K1, ⌈δ/2⌉) gives the claim. If d < δ/2
then also K1 < δ/2 so the first step allows us to reduce the
diameter of Γ and repeat the argument.

This leads to a projected strategy to prove the classification
theorem by a series of inductive arguments.



Metrically
Homogeneous
Graphs and
Distance

Semigroups

Gregory
Cherlin

Introductory
remarks

Homogeneous
metric spaces

Metrically
homogeneous
graphs

Distance
semigroups

Another application

Lemma

Let Γ be a primitive metrically homogeneous graph of known
type, and d ≥ max(K1, 2) fixed. Then the class Ad of
subspaces of Γ of diameter at most d has a Fräıssé limit.
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Toward the classification

Work in progress with Amato.
Γ infinite, not of the form Tm,n.

Define δ,K1,K2,C0,C1 and H.

Show these parameters control the triangles of Γ as
expected.

Show the Fräıssé limit Γ∗ exists.

It follows that any finite subspace of Γ embeds
isometrically into Γ∗.

Prove the converse: if A is a finite subspace of Γ∗ then A
embeds into Γ. Proceed by induction on the diameter d of
A, for d ≥ max(K1, 2).

As Γ is determined by its finite subspaces, it follows that Γ is
isometric to Γ∗.
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Problems

Understand distance semigroups and special distance
semigroups. Is there a purely algebraic definition? To
what extent can the partial order be varied?

Some form of the following distributive law appears
relevant (where defined).

x + inf S = inf(x + S)

Is associativity in fact an assumption, or a conclusion?

Proof of the existence of the relevant Fräıssé limits
(amalgamation) is complicated. There should be a direct
proof by shortest path completion.

Relate the algebra of distance semigroups to the model
theory of homogeneous binary structures in symmetric
languages.

We have mainly examples at this point.
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