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1. PARTIALLY COMMUTATIVE MONOIDS.

In what follows, all graphs under consideration are undirected,
without loops and multiple edges. Let Γ = 〈X ; E〉 be a graph
with the set of vertices V (Γ) = X = {x1, . . . , xn, . . .} and the set
of edges E(Γ) = E . We shall refer to Γ as a commutation or a
de�ning graph. First partially commutative structures being
studied were monoids. The notion of partially commutative
monoid was introduced by Cartier and Foata in 1969 to study
combinatorial problems in connection with word
rearrangements.



2. (FREE) PARTIALLY COMMUTATIVE GROUPS.

A (free) partially commutative group F (X ; Γ) is de�ned by the
presentation

F (X ; Γ) = 〈X ; xixj = xjxi , if {xi , xj} ∈ E〉.

The groups F (X ; Γ) were �rst introduced in the 1970's by
Baudisch as �semifree groups� and then were studied in the
1980's by Droms calling these groups by �graph groups�.
Nowadays, the �nitely generated groups F (X ; Γ) are usually
called right-angled Artin groups.



3. PARTIALLY COMMUTATIVE GROUPS.

The class of free partially commutative groups contains free,
and free Abelian groups. This class is closed with respect to
direct and free products. Free partially commutative groups
possess a number of remarkable properties. For example, a
group F (X ; Γ) is a residually torsion-free nilpotent group.
Therefore free partially commutative groups are torsion-free.
These groups are linear. It is observed that two free partially
commutative groups F (X ; Γ) and F (Y ; ∆) are isomorphic i�
their commutation graphs Γ and ∆ are isomorphic.
The word, conjugacy and isomorphism problems are decidable
in right-angled Artin groups.
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THE BLOCK DECOMPOSITION OF ELEMENTS OF FREE
PARTIALLY COMMUTATIVE GROUPS



5. PARTIALLY COMMUTATIVE GROUPS. MINIMAL WORDS.

Basic properties of groups F (X ; Γ) were established by Baudisch
(1977, 1981), using combinatorial methods. Call an element w
in the free monoid (X±1)∗ which is a minimal length
representative of an element of F (X ; Γ) a minimal word. The
Cancellation Lemma [Baudish, 1977] asserts that if w is a
non-minimal word in (X±1)∗ then w has a subword xux−1,
where x ∈ X±1, and x commutes with every letter occurring in
u. This lemma implies an algorithm for �nding the minimum
words for elements of the group F (X ; Γ).



6. PARTIALLY COMMUTATIVE GROUPS.

Let G be a group and let g1,g2 ∈ G. By (g1,g2) denotes the
commutator g−1

1 g−1
2 g1g2. Let R = {(xi , xj) | {xi , xj} ∈ E}. So

F (X ; Γ) has presentation

F (X ; Γ) = 〈X ; R〉.
Then the Transformation Lemma, [Baudish, 1977] asserts that,
if u and v are minimal words and u = v in F (X ; Γ), then the
word u may be transformed into the word v using only relations
xεi

i xεj
j = xεj

j xεi
i , where (xi , xj) ∈ R, εi , εj ∈ {±1} (that is,

without insertion or deletion of any subwords of the form
xεx−ε, x ∈ X , ε ∈ {±1}.) It follows that, given g ∈ F (X ; Γ),
there is a unique subset Y ⊆ X such that all minimal words
representing g belong to (Y ∪ Y−1)∗. The set Y is called the
support of g, denoted supp(g). Moreover, an element g of
F (X ; Γ) has a well denoted length equal to the length of a
minimal word w ∈ (X ∪ X−1)∗ representing g.



7. BLOCK (CANONICAL) DECOMPOSITIONS.

We can write elements g ∈ F (X ; Γ) in a canonical form, for
which it is convenient to use the complement Γ of the de�ning
graph Γ that is the graph with vertex set X , which has and edge
{xi , xj} if and only if {xi , xj} is not an edge of Γ.
Given an element g of F (X ; Γ), which we regard as a minimal
word, the graph ∆(g) of g is the full subgraph of Γ on the
vertex set supp(g).
If ∆(g) has components ∆1, . . . ,∆m then we may write

g = g1 . . . gm, (1)

where ∆(gi) = ∆i and (gi ,gj) = 1, for all i , j . We call gi the
blocks of g. As elements of F (X ; Γ), the blocks of g are uniquely
determined. The notation (1) named the canonical for
g ∈ F (X ; Γ). The canonical form is useful for solving algorithmic
and algebraic questions in partially commutative groups.
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PARTIALLY COMMUTATIVE METABELIAN NILPOTENT
GROUPS



9. PARTIALLY COMMUTATIVE GROUPS IN VARIETIES.

From now on X = {x1, . . . , xn} always stands for a �nite set of
vertices. Consider a variety M of groups. A partially
commutative group in M with a commutation graph Γ is a
group F (X ; Γ;M) de�ned as

F (X ; Γ;M) = 〈X ; xixj = xjxi , if {xi , xj} ∈ E〉

in M.
In particular, F (X ; Γ) = F (X ; Γ;G), where G is the variety of all
groups.



10. PARTIALLY COMMUTATIVE METABELIAN NILPOTENT
GROUPS.

Let G be a group, A,B ≤ G. Then (A,B) = gp〈(a,b)〉 is the
group generated by all commutators of form (a,b),a ∈ A,b ∈ B.
So G ′ = (G,G) is the commutant of G.
Denote by A2 the variety of all metabelian groups

A2 = {G | (G ′,G ′) = 1}.

Let Nc be a variety of nilpotent groups of nilpotence degree at
most c. This variety consists of all groups satisfying the identity
vc+1(y1, . . . , yc+1) = 1, where v2 = (y1, y2), vc+1 = (vc , yc+1).
Let N2,c = A2 ∩Nc .
A partially commutative metabelian nilpotent group
Mc,Γ = F (X ; Γ;N2,c) represented as

Mc,Γ = 〈X ; xixj = xjxi , if {xi , xj} ∈ E〉

in the variety N2,c .



11. THE MALT'SEV BASES.

If G is a torsion-free �nitely generated nilpotent group then G
has a central series

G = G1
a1
> G2

a2
> . . .

as
> Gs+1 = 1, [Gi ,G] ≤ Gi+1, (2)

with in�nite cyclic factors. Take elements a1, . . . ,as such that
Gi = gp〈ai ,Gi+1〉.

An ordered system {a1, . . . ,as} of elements is called a Mal'tsev
basis for G obtained by the central series (2).

The construction of a Mal'tsev basis of a group makes it
possible to indicate a canonical form of its elements. Every
element g ∈ G can be uniquely represented in the form

g = at1
1 . . . a

ts
s , ti ∈ Z.



12. Γv .

Let v(xi1 , . . . , xim ) be a notation of an element v ∈ F (X ; Γ;N2,c)
as a product of elements in X±1, where the vertices xi1 , . . . , xim
occur in this notation. Let

σ(v) = {xi1 , . . . , xim}.

Denote by Γv the subgraph of Γ generated by the set σ(v) and
by Γv ,x the connected component of the graph Γv such that this
component contains a vertex x ∈ σ(v).
Let us order the set X . By max(Γv ,x ) denote the greatest vertex
in the connected component Γv ,x .



13. B(Mc,Γ)

Set (y1, y2, . . . , ym) = (. . . (y1, y2), . . . , ym). Let B(M ′c,Γ) be the
set of commutators of the form

v = (xj1 , xj2 , . . . , xjm ), 2 ≤ m ≤ c,

in Mc,Γ such that the following conditions hold:
(a) xj2 ≤ xj3 ≤ . . . ≤ xjm , xj2 < xj1 ;
(b) the vertices xj1 and xj2 are in di�erent connected components
of the graph Γv ;
(c) xj1 = max (Γv ,xj1

).



14. THEOREM 1.

Theorem 1 [Tim., 2011, AL]. The set of elements X t B(M ′c,Γ) is
a Mal'tsev basis of the group F (X ; Γ;N2,c) obtained by re�ning
the lower central series of this group.

Theorem 1 turned out to be very useful for �nding a basis for a
partially commutative metabelian group. The description of the
basis of a partially commutative nilpotent group is completely
unrelated to this theorem.
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PARTIALLY COMMUTATIVE METABELIAN GROUPS



16. PARTIALLY COMMUTATIVE METABELIAN GROUPS.

A partially commutative metabelian group MΓ = F (X ; Γ;A2)
represented as

MΓ = 〈X ; xixj = xjxi , if {xi , xj} ∈ E〉

in the variety A2.
Among all partially commutative groups F (X ; Γ;M),
M 6= G, N2 the most studied case is the case of partially
commutative metabelian groups. There are results obtained for
centralizers and annihilators of elements of MΓ, (Gupta., Tim.:
2009), embeddings these groups into matrix groups (Tim.:
2018), their groups of automorphisms (Tim.: 2015, 2020), values
of centralizer dimensions (Tim.: 2017, 2018), direct
decompositions (Romanovskii, Tim., 2020). The universal and
elementary theories of these groups are investigated (Gupta.,
Tim.: 2009, 2011, 2012) (Tim.: 2010, 2013).



17. M ′Γ.

The group MΓ = MΓ/M ′Γ is a free Abelian group. Denote by g
the image of an element g ∈ MΓ in the group MΓ by natural
homomorphism MΓ → MΓ. Then the elements X = {x1, . . . , xn}
form a basis of MΓ. Let ai = x i , A = 〈a1, . . . ,an〉.
The commutant M ′Γ is a right module over the group ring Z[MΓ].
The action of an element g ∈ MΓ on c ∈ M ′Γ is de�ned via
cg = g−1cg.
In fact the commutant is a Z[A]−module.
Let

Z[A] 3 γ =
l∑

i=1

migi , mi ∈ Z.

Then
cγ = (cm1)g1 . . . (cml )gl .



18. A BASIS for COMMUTANT of FREE METABELIAN GROUP.

Let M be a free metabelian group with an ordered basis
X = {x1, . . . , xn}. By ai denote the image of xi by natural
homomorphism M −→ M/M ′. Then a basis of the commutant
M ′ is the set B(M ′) consisting of all elements of the kind

(xi , xj)
a

si1
i1
...a

sim
im ,

such that si1 , . . . , sim ∈ Z, xj < xi , xj ≤ xi1 < xi2 < . . . < xim . Let
the set B(M ′) be ordered. Then each element g ∈ M can be
written uniquely in the form

g = xq1
1 . . . xqn

n b1 . . . bm,

where qi ∈ Z, b1 ≤ b2 ≤ . . . ≤ bm ∈ B(M ′).



19. BASES of PARTIALLY COMMUTATIVE METABELIAN
GROUPS.

Why elements B(M ′) do not form a basis of M ′Γ?

1. Let {xi , xj} ∈ E(Γ). Then (xi , xj)
a

si1
i1
...a

sim
im = 1 in MΓ.

2. Let xi , xi1 , . . . , xim , xj be a path connecting the vertices xi and
xj of Γ. Then

(xi , xj)
(ai1
−1)...(aim−1) = 1

in MΓ. This gives a relation over Z between elements from B(M ′).



20. BASES of PARTIALLY COMMUTATIVE METABELIAN
GROUPS.

Theorem 2 [Tim., 2021, Izvestiya: Mathematics]. Let the set
X = {x1, . . . , xn} be ordered. Then a basis of the commutant M ′Γ
is the set we denote by B(M ′Γ) consisting of all elements v of the
form

v = (xi , xj)
aj1

t1 ...ajm
tm
, {t1, . . . , tm} ⊂ Z \ {0}, ai = xiM ′Γ,

such that the following conditions are satis�ed:
(1) xj ≤ xj1 < xj2 . . . < xjm , xj < xi ;
(2) the vertices xi and xj are in di�erent connected components
of the subgraph Γv of Γ, which is generated by all vertices of the
set {xi , xj , xj1 , . . . , xjm};
(3) xi = max(Γv ,xi ), where Γv ,xi the connected component of the
graph Γv containing xi .



21. A CANONICAL NOTATION of ELEMENTS of PCMG.

Since MΓ/M ′Γ is a free Abelian group, it follows a corollary.

Corollary. Let B(M ′Γ) be linearly ordered. Then any element g of
the group MΓ can be uniquely written in the form

g = xq1
1 . . . xqn

n v r1
1 . . . v rm

m ,

where qi , rj ∈ Z and v1 < . . . < vm, vj ∈ B′(MΓ).
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23. PARTIALLY COMMUTATIVE NILPOTENT GROUPS.

For a group G let

G(1) = G, G(c+1) = (G(c),G).

The properties of partially commutative nilpotent groups

F (X ; Γ;Nc) ∼= F (X ; Γ)/F(c+1)(X ; Γ)

are much less studied. It is known that the group F (X ; Γ;Nc) is
torsion-free (Duchamp, Krob, 1992). Canonical form for
elements of groups F (X ; Γ;Nc) for c ≥ 4 was not known yet.
The cases c = 2, 3 follows from theorem 1, the case c = 2 was
considered by Mishchenko and Treier, 2007.



24. PARTIALLY COMMUTATIVE LIE ALGEBRAS.

The study of the (free) partially commutative Lie algebra was
begun by Duchamp in 1987. Let R be a domain. A (free)
partially commutative Lie R − algebra LR(X ; Γ) is de�ned by
the Lie algebra presentation

LR(X ; Γ) = 〈X ; [xi , xj ] = 0, if {xi , xj} ∈ E〉,

where [, ] is the Lie brackets.
The �rst result on bases of free partially commutative Lie
algebras LR(X ; Γ) was obtained by Duchamp and Krob 1992.
But they did not give an explicit description of a basis. Using
the method of Gr�obner�Shirshov bases Poroshenko (2011)
obtained an explicit description of bases for free partially
commutative Lie algebras.



25. THE RELATION BETWEEN PCNG and PCAL.

Put L(X ; Γ) = LZ(X ; Γ). By F denote a graded Lee Z−algebra

F =
⊕
m≥1

F(m)(X ; Γ)/F(m+1)(X ; Γ).

Let us now de�ne a family A(X ) subsets of L(X , Γ) by
induction. We set A1(X ) = X . For m ≥ 2, put

Am(X ) = {[u, v ] |u ∈ Ap(X ), v ∈ Aq(X ), p + q = m},

A(X ) =
⋃

m≥1

Am(X ).



26. A RELATION BETWEEN PCNG and PCAL.

Let Lm(X ; Γ) be a submodule of L(X ; Γ) generated by Am(X ).
Duchamp and Krob proved that there is an isomorphism α of
graded Lie algebras from L(X ; Γ) graded by (Lm(X ; Γ)m≥1) into
F :

α(xi) = (xiF(2)(X ; Γ),1,1, . . .), i = 1, . . . ,n.

We use this result and results of Poroshenko to describe a basis
of a partially commutative nilpotent group.



27. LEXICOGRAPHIC ORDERS on X ∗.

The concept of basic commutators was introduced by Hall.
Hall's commutators are usually used in group theory.
We will use standard commutators introduced by Chen, Fox,
Lindon, 1958.
Denote by X ∗ the set of all words in X = {x1, . . . , xn} including
the empty word denoted by 1. We also denote by |u| the length
of any u ∈ X ∗. Let us extend an arbitrary linear order on X to a
lexicographic order �<� on X ∗ as follows. Put u < 1 for each
1 6= u ∈ X ∗ and by induction put xiu′ < xjv ′ if xi < xj or
xi = xj ,u′ < v ′.



28. G(X ).

Let

ALS(X ) = {u ∈ X ∗ | ∀u1,u2 ∈ X ∗(u = u1u2 −→ u2u1 < u1u2)}.

A word u ∈ ALS(X ) is called an associative Lyndon�Shirshov
word.

Let us de�ne a set G(X ) of and a bar map G(X ) −→ X ∗ as
follows:
(a) xi ∈ G(X ) for all xi ∈ X , xi = xi .
(b) If u, v ∈ G(X ), then (u, v) ∈ G(X ) and (u, v) = u v .

The bar map erases all parentheses and commas.



29. G(X ), (X ∗).

We put

Gm(X ) = {u | u ∈ G(X ), |u| = m}, G(X ) =
⋃

m≥1

Gm(X ).

Now we give a de�nition of the set (X ∗) ⊆ G(X ) of standard
commutators:
(a) xi ∈ (X ∗) for i = 1, . . . ,n.
(b) Let z = (u, v). Then z ∈ (X ∗) if and only if the following
conditions are true:
(b1) z ∈ ALS(X );
(b2) u, v ∈ (X ∗), v < u;
(b2) if u = (u1,u2) then u2 ≤ v .



30. STANDARD COMMUTATORS of CHEN, FOX, and LYNDON.

Let
(X ∗)m = {u |u ∈ (X ∗), |u| = m}.

If F is the free group with the basis X = {x1, . . . , xn}, then the
set of commutators (X ∗)m forms a basis of the free Abelian
group F(m)/F(m+1) for m = 1,2 . . . (see.Chen, Fox, Lyndon,
1958).

Let u ∈ X ∗. By δi(u) denote the number of occurrences of xi in
u. Put

supp(u) = {xi | δi(u) 6= 0}.



31. C(X ; Γ).

Finally, let us de�ne by induction a subset C(X ; Γ) of (X ∗) :
(a) All elements of X belong to C(X ; Γ).
(b) An element u ∈ (X ∗)m,m ≥ 2, belongs to C(X , Γ) if
u = (v , z), where v and z are elements of C(X ; Γ) and there is a
letter (vertex) in supp(v) such that is not connected in Γ with
the �rst letter (vertex) of z.
(c) There are no other elements in C(X ; Γ).



32. C(m)(X ; Γ).

Let
Ci(X ; Γ) = {u ∈ C(X ; Γ) | |u| = i , i = 1, . . .}.

Let �≺� be an linear order on C(X ; Γ) such that u ≺ v if
u ∈ Cp(X ; Γ), v ∈ Cq(X ; Γ), 1 ≤ p < q.
Let

C(m)(X ; Γ) =
⋃

1≤i≤m

Ci(X ; Γ).



33. BASES of PCNG.

Theorem 3 [Tim., 2021, IJAC]. The set C(m)(X ; Γ) with respect
to the order �≺� is a Mal'tsev basis for the group F (X ; Γ;Nm)
obtained by re�ning the lower central series.

Example 3. Let Γ = 〈x1, x2, x3; {x1, x2}〉, x3 ≺ x2 ≺ x1.
By construction,

C(3)(X ; Γ) = {x1, x2, x3; (x1, x3), (x2, x3); (x1, (x1, x3)),

(x2, (x2, x3)), ((x1, x3), x2), ((x1, x3), x3), ((x2, x3), x3)}

is a Mal'tsev basis of the group F (X ; Γ;N3).
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35. PARTIALLY COMMUTATIVE METABELIAN PRO-P-GROUPS.

By a subgroup, a homomorphism, a generating set we mean a
closed subgroup, a continuous homomorphism, a generating set
in the topological sense, respectively.
Interesting results about right-angled Artin pro-p-groups were
obtained by Snopke and P. Zalesskii (see. ArXiv, 2020).
In [Afanaseva, Tim., 2019], centralizers of elements and
annihilators of commutators in partially commutative
metabelian pro-p-groups were studied.



36. PARTIALLY COMMUTATIVE METABELIAN PRO-P-GROUPS.

Denote by P a free metabelian pro-p-group and by PΓ the
partially commutative metabelian pro-p-group de�ned by a
graph Γ = 〈X ; E〉. Let X = {x1, . . . , xn}. The quotient group of
PΓ by its commutant P ′Γ is a free Abelian pro-p-group A with a
basis {a1, . . . ,an}, where ai is an image of xi via the natural
homomorphism PΓ → PΓ/P ′Γ. This group is isomorphic to the
direct sum of n copies of the additive group of the ring of integer
p-adic numbers Zp. The action of PΓ on P ′Γ by conjugation

x → xg = g−1xg

de�nes a structure of a right module on P ′Γ over Zp[[A]]. The
algebra is Zp[[A]] identi�ed with the power series algebra
Zp[[y1, . . . , yn]], where yi = ai − 1.



37. A NOTATION of ELEMENTS of PCM pro-p-GROUPS.

Similarly, P ′ is a module over the algebra Zp[[y1, . . . , yn]]. For
this reason, any element p ∈ P can be written in the form

p = x l1
1 . . . x

ln
n

∏
1≤i<j≤n

(xi , xj)
αij ,

where li ∈ Zp, αij ∈ Zp[[y1, . . . , yn]].



38. BASES of PARTIALLY COMMUTATIVE METABELIAN
PRO-P-GROUPS.

The following theorem is analogous to Theorem 2 and gives a
description of a basis for the commutant of a partially
commutative metabelian pro-p-group.



39. BASES of PARTIALLY COMMUTATIVE METABELIAN
PRO-P-GROUPS

Theorem 4 [Tim., 2021, AL]. Let PΓ be a partially commutative
metabelian pro-p-group. Let the set {x1, . . . , xn} of vertices of a
graph Γ be ordered. Then a basis B(P ′Γ) of the commutant P ′Γ
over Zp is the set of all elements v of the form

v = (xi , xj)
y

s1
j1
...ysm

jm , {s1, . . . , sm} ⊂ N,

such that the following conditions are satis�ed:
1) xj ≤ xj1 < . . . < xjm , xj < xi ;
2) the vertices xi , xj are in di�erent connected components of
graph ∆v generated by all vertices of the set {xi , xj , xj1 , . . . , xjm};
3) xi = max{∆v ,xi}, where ∆v ,xi the connected component of the
graph ∆v containing xi .
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