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What is so special about 20217

» Bruno Poizat 75th birthday.

» 50th anniversary of NP-completeness
and the P vs NP problem (Cook'71, Levin'73).

This talk: a (biased) survey on algebraic models of computation,
including algebraic versions of P versus NP.



A FASCINATING ADVENTURE INTO

THE UNKNOWNI

In this old (1957) black-and-white movie, a businessman is exposed
to radioactive dust during a boating trip. He begins to shrink while
researchers try and fail to stop that process.



A FASCINATING ADVENTURE INTO
THE UNKNOWN!
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The Blum-Shub-Smale model

» Formalization of “real RAM" model:
exact arithmetic (4, —, x, <) on real numbers.

» Versions of “P=NP7?" problem over R, C, finite fields...
» Initial paper: L. Blum, M. Shub and S. Smale. On a theory of
computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines,
Bulletin AMS, 1989.

» Their book: L. Blum, F. Cucker, M. Shub, S. Smale.
Complexity and Real Computation, Springer, 1998.
Includes lots of material on numerical algorithms.

> B. Poizat's book: Les petits cailloux. Aléas, 1995.
Model theoretic point of view.
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Computation in first-order structures

» Complexity classes Py, NPy, for any structure M.
When M is finite, we obtain the usual classes P and NP.

» Model of computation: multi-tape Turing machines over M.
Each cell contains an element of M.
Machine can apply functions and relations of M.
The input is a finite sequence of elements of M.

> We can also define Py, using uniform circuit families over M.
These generalize Boolean circuits.



Boolean circuits
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Circuits over M

> We have gates for functions and relations of M.
» For instance: +, X, < over R.

if-then-else statement: s(x,y,z) = xy + (1 — x)z.
» Formulas have a tree structure,

but circuits are directed acyclic graphs =

Circuits are compact representations
of quantifier-free formulas.
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NP and quantifier elimination

For a problem A € NP;:

xeAsdye MPN(xY) eB

where X € M" is the input, B € P and p is a polynomial.
y is the " certificate” of membership to A.
Suppose M admits quantifier elimination.

» For any quantifier-free formula F:

WF(x,y) = G(x)
where G is quantifier free.
» Py = NPy means:

G can be constructed in polynomial time from F,
if we represent G by a circuit over M.



The BSS model today

P> Research area no longer so active.

» Some exceptions: JR-complete problems (~ NPr-complete):
Nash equilibria [Schaefer-Stefankovi¥], graph drawing,
tensor rank [SS, Shitov], covering of polygons
[Abrahamsen’21]...

Tensor rank is NPp-complete for any field F [SS'18].
Pr vs NPg, Pc vs NP are natural problems,

closely connected to complexity of quantifier elimination.
They should be solved someday!
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Pr vs NPg, Pc vs NP¢ are natural problems,
closely connected to complexity of quantifier elimination.
They should be solved someday!
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BSS machines are very powerful:
-+ good expressive power.
- proving lower bounds is difficult.
We still have the lower bounds:
» NCr C Pr € EXPr
(Cucker'92, degree argument).
» For fixed polynomial time: TIMEg(n9) # NTIMEg(n9)
(Cucker-Shub'96, number of connected components).

And that’s it!

A “solution” to this problem: let's shrink the model!

For instance: P # NP over (R, +, —,=) (Meer, 1992)



Decision and computation trees

IxeRax’+bx+c=07?

b=07? ‘b2—4ac20?‘

/\
Accept Accept Reject
/\

Accept Reject
For polynomials of bounded degree (e.g., d =1,d = 2):
Complexity = tree depth.

For unbounded degree:
complexity of polynomial evaluation should be taken into account
(We'll have branch nodes and computation nodes).



The unreasonable power of trees

Upper bounds:
» Tree depth < Computation time of BSS machine.
» Depth n for any Boolean function on n variables.

» Depth O(n*) for Knapsack (Meyer auf der Heide'84, '88);
Point location in arrangements of hyperplanes (Meiser'93).



The unreasonable power of trees

Upper bounds:
» Tree depth < Computation time of BSS machine.
» Depth n for any Boolean function on n variables.
» Depth O(n*) for Knapsack (Meyer auf der Heide'84, '88);
Point location in arrangements of hyperplanes (Meiser'93).
Lower bounds:
» Q(n?) for Knapsack (Dobkin-Lipton'76)
with linear decision trees (d = 1).

» Many other results by Yao, Grigoriev, Karpinski, Gabrielov,
Vorobjov...
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Machines over the reals with addition and order

Let M = (R, +, —, <).
Transfer “Theorem” [Fournier-Koiran'00]:
P=NP < Py = NPy.
Proof of =: Let A be an arbitrary problem in NP,.
» A can be solved unconditionally in depth poly(n).
Proof is not (efficiently) constructive.

» Construct “on the fly" the path followed by input x € R"”
from root to leaf with help of an oracle in NP.

Can we shrink the BSS model in another way?
Instead of removing multiplication,
we can remove branching.



Arithmetic circuits / straight-line programs

A depth 4 circuit.
The inputs are variables (xi, x2,...) or constants (—1,2,v/2,...),
the output is a polynomial.



VP = VNP?

» The permanent polynomial

perm(X) = Z HXia(i)

o€S, i=1

is VNP-complete if char(K) # 2 (Valiant'79, Biirgisser'00).

» As a result,
VPx = VNPk < perm has polynomial size arithmetic circuits.
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Connection to the BSS model

Let K be the field of real or complex numbers.

Transfer “Theorem” [Koiran-Perifel’07-09]:

(P = PSPACE and VPx = VNPgk) = Px = NPg.

In fact, (P = PSPACE and VPx = VNPgk) < Py = PARk.

Proof sketch of =:
Construct “on the fly” the path followed by input x € R”
from root to leaf with help of oracles in PSPACE and VNP.

What next?
» It seems reasonable to focus on VP versus VNP.
> But it's a difficult question...

» Let's shrink the arithmetic circuit model!
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Bounded depth circuits

» Model: arithmetic circuits of depth 3 (XIX) over K,
char(K)=0.

» Target polynomial:
SYMg, the symmetric polynomial of degree d in n variables.

Theorem [Nisan-Wigderson'96]: Any homogeneous depth 3 circuit
computing SYM29 requires size Q((n/4d)9).
Complexity measure: dimension of space of partial derivatives.

» Remark [Ben-Or]: Homogeneity assumption is necessary.

» Recent progress:
shifted partial derivatives (Neeraj Kayal 2012 + many others).
Arbitrary constant depth (Limaye, Srinivasan, Tavenas,
June 2021).

How far to general (unbounded depth) circuit lower bounds?



Reduction to depth 4

Theorem [Agrawal-Vinay’'08,Koiran'12, Tavenas'13]:
Let C(x1,...,xn) be a circuit of degree d and size s,
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Reduction to depth 4

Theorem [Agrawal-Vinay’'08,Koiran'12, Tavenas'13]:
Let C(x1,...,xn) be a circuit of degree d and size s,
where d, s = n9),

There is an equivalent depth 4 circuit of size nO(V1).

» By shifted partials, this is essentially optimal
[Fournier,Limaye,Malod,Srinivasan'15].

» Also, reduction to depth 3
[Gupta, Kamath, Kayal, Saptharishi'13].
Does not preserve homogeneity.

Wanted: n“(V" lower bound for circuits of depth 3 or 4....
But we are currently stuck!
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The Real 7-Conjecture

Conjecture: Consider f(X) = S2% | £ (X),

where the f;; are t-sparse.

If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then VP # VNP.
Remarks:

» The expression for f is a univariate circuit of depth 4.

> Case k =1 of the conjecture follows from Descartes’ rule
(t monomials = at most 2t — 1 real roots).
» By expanding the products, f has at most 2kt™ — 1 zeros.

» k =2 is open. A take-home problem:
how many real roots for fg + 1? Descartes’ bound is O(t?)
but true bound could be O(t).



Real 7-Conjecture = VP # VNP

Very rough proof sketch:
1. Start with polynomial with many real roots such as:
F(X) =TT (X = ).
2. Assuming VP = VNP, reduce it to depth 4:
F(X) = S5 T f(X),
where the f;; are t-sparse, and k, m, t = 20(n).

3. This is a contradiction with the real 7-conjecture.



T-conjecture for Newton polygons

» Newton polygon for (X, Y) =1+2X3Y + XY2 + XY3:

T

» Real roots of 7(X) replaced by Newton polygons of (X, Y).
» Similar conjecture with similar consequences
(K., Portier, Tavenas, Thomassé'15).
» The real 7-conjecture implies the 7-conjecture for Newton
polygons (Hrubes'19).

> Nontrivial O(t*/3) bound for size (number of vertices)
of the Newton polygon of (X, Y)g(X,Y) + 1.
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Model: 7(x) =37, pi(x)® where deg(p;) is small (say, < 2).

Lower bound theorem [Kayal, Koiran, Pecatte, Saha'15]:
s = Q(+/d) for the degree d polynomials

Vd/2
D (x—a) and [(x — a1)(x — a)]%/
i=1
where the a; are distinct.
» Wanted: s = Q(d) for some explicit family of polynomials.
» This is open even for deg(p;) = 1!
» How can we possibly shrink that model??



Shrinking the field:
sums of powers of real affine functions

Model: Za, x — a;)¥ where a;, a; € R.
i=1

Lower bound theorem [Garcia-Marco, Koiran'17]:
s = Q(d) for the degree d polynomials

d/4
Hi(x) = (x + 1)%F — x9+1 Hy(x Z ai(x — a;)

where «; # 0 and the a; are distinct (and e; < d for Hj).

» Proof by Birkhoff interpolation.
» What about the complex field?



Sums of powers of complex affine functions

Open problem: Lower bound better than Q(+/d) in the model
S
f(x)= Za;(x —a;)°
i=1

over the field of complex numbers for some explicit polynomial.

» An upper bound: If £ is a primitive k-th root of unity,

k
. . d .
J Jyd — d—i
PICERILEIDS k<l_>x |
j=1 i=—1(mod k)
0<i<d
> Rules out Ha(x) = S35, aj(x — ;)% as “hard polynomial”
if aj, aj € C may be arbitrary.
> Hi(x) = (x + 1)9+1 — x9*+1 may still be hard.



Small degree: sums of cubes of linear forms

Fxty o) = S bi(xas e oxw)?
i=1

» Smallest possible r is the symmetric tensor rank of f
(also known as Waring rank).

> It's ©(N?) for generic f; exact value known for any degree
(Alexander-Hirschowitz theorem).



Small degree: sums of cubes of linear forms

Fxty o) = S bi(xas e oxw)?
i=1

» Smallest possible r is the symmetric tensor rank of f
(also known as Waring rank).

> It's ©(N?) for generic f; exact value known for any degree
(Alexander-Hirschowitz theorem).

» Longstanding open problem (Strassen?):
find explicit f with superlinear (symmetric) tensor rank.

P> As a plausible candidate we have
the matrix multiplication tensor (N = 3n?):

n
f = Z X,'ijka,'.
ijk=1



