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Preliminaries

Let C be some class of groups. A group G is said to be residually C-group
or simply C–residual, if for any non-identity element g ∈ G there exists a
homomorphism 𝜙 of G to some group from C such that 𝜙(g) ̸= 1. If C is
the class of all finite groups, then G is called residually finite. If C is the
class of finite p-groups, then G is said to be residually p-finite. If C is the
class of nilpotent groups, then G is said to be residually nilpotent.

One of the first results on residually nilpotent groups belongs to Magnus
who proved that a free group is residually nilpotent (1935).
Malcev proved (1940) that if G is a finitely generated subgroup of GLn(F )
where F is some field of characteristic 0, then G contains some subgroup
of finite index which is residually p-finite for almost all prime p.
Azarov (2010) proved that any semi-direct products of finitely generated
residually p-finite group by residually p-finite group is virtually residually
p-finite. Next proposition follows from this result:

Any group of the form Fno𝜙Z is virtually residually p-finite.
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Preliminaries

Let G be a group and let x1, x2, . . . be elements of G . A simple
commutator [x1, x2, . . . , xn] of weight n ≥ 1 is defined inductively by setting

[x1] = x1, [x1, x2] = x−1
1 x−1

2 x1x2 and [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn]

for n ≥ 3.

For a group G define its transfinite lower central series

G = 𝛾1(G ) ≥ 𝛾2(G ) ≥ . . . ≥ 𝛾𝜔(G ) ≥ 𝛾𝜔+1(G ) ≥ . . . ,

where 𝛾𝛼+1(G ) = ⟨[g𝛼, g ] | g𝛼 ∈ 𝛾𝛼(G ), g ∈ G ⟩ and if 𝛼 is a limit ordinal,
then 𝛾𝛼(G ) =

⋂︀
𝛽<𝛼 𝛾𝛽(G ).
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Preliminaries

The group G is said to be transfinitely nilpotent if 𝛾𝛼(G ) = 1 for some
ordinal 𝛼, or simply nilpotent if 𝛼 is a finite ordinal.

In particular,

Proposition

G is residually nilpotent if and only if

𝛾𝜔(G ) =
∞⋂︁
i=1

𝛾i (G ) = 1.

The smallest ordinal 𝛼 such that 𝛾𝛼(G ) = 𝛾𝛼+1(G ) is called the length of
the lower central series of G .
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Motivations

The residually nilpotence groups of the form Zn o𝜙 Z were studied by
Aschenbrenner and Friedl (2011). They found a criteria of residually
nilpotence and residually p-finiteness for groups of the form
Zn o𝜙 Z, 𝜙 ∈ Aut(Zn). If P𝜙(x) is the characteristic polynomial of the
matrix [𝜙], pi (x) ∈ Z[x ], i = 1, . . . , s, are its non-reducible factors, then
the following proposition holds.

Theorem (Aschenbrenner-Friedl, 2011)
a) Zn o𝜙 Z is residually nilpotent if and only if pi (1) ̸= ±1, i = 1, . . . , s,

b) Zn o𝜙 Z is residually p-finite if and only if pi (1) ∈ pZ, i = 1, . . . , s.
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Motivations

Mikhailov (2016) constructed a group GM with one defining relation that
has the lower central series of length 𝜔2. It answered Baumslag’s question:
Is the lower central series of a one-relator group of length at most n𝜔 for
some finite ordinal n?(1974)

Example (Mikhailov, 2016)

The group GM = ⟨a, b|ab2 = a(a3)b⟩ ∼= F2 o𝜙 Z, where 𝜙 :

{︂
x1 → x2,
x2 → x1x

3
2 .

has the lower central series of length 𝜔2.

Also, the following theorem was formulated without proof for groups of the
form Fno𝜙Z.

Theorem (Mikhailov, 2016)

Let G = Fn o𝜙 Z. If all groups G k = (F ab
n )⊗k o𝜙k

Z, k ≥ 1, are residually
nilpotent, then 𝛾𝜔2(G ) = 1. Wherein if G is not residually nilpotent, then
the length of its lower central series is equal to 𝜔2.
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Main results for groups Fn o𝜙 Z

Let us consider the semi-direct product of the free group
Fn = ⟨x1, x2, . . . , xn⟩ and infinite cyclic group Z = ⟨t⟩, where the
conjugation by t is induced by automorphism 𝜙 ∈ Aut(Fn)

Fn o𝜙 Z = ⟨x1, x2, . . . , xn, t | t−1xi t = 𝜙(xi ), i = 1, 2, . . . , n⟩.

The automorphism 𝜙 induces an automorphism of the abelianization
F ab
n = Fn/𝛾2(Fn) that is free Z-module. We will denote this automorphism

by 𝜙 and its matrix by [𝜙]. Denote by G k = (F ab
n )⊗k o𝜙k

Z, k ≥ 1, where
the automorphism 𝜙k ∈ Aut(F ab

n )⊗k is induced by automorphism 𝜙.
Hence, 𝜙1 = 𝜙.

Also, we will consider groups ̂︀Gk = 𝛾k(Fn)/𝛾k+1(Fn)ô︀𝜙k
Z, k ≥ 1, wherê︀𝜙k is the automorphism of Z-module 𝛾k(Fn)/𝛾k+1(Fn) that is induced by

the automorphism 𝜙.
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Main results for groups Fn o𝜙 Z

Proposition A

a) If G k is residually nilpotent then ̂︀Gk is residually nilpotent.
b) If G k is residually p-finite then ̂︀Gk is residually p-finite.

Theorem B1

Let G = Fn o𝜙 Z. If all groups ̂︀Gi = 𝛾i (Fn)/𝛾i+1(Fn)ô︀𝜙i
Z, i ≥ 1, are

residually nilpotent, then 𝛾𝜔2(G ) = 1. Wherein if G is not residually
nilpotent, then the length of its lower central series is equal to 𝜔2.

Theorem B2

Let G = Fn o𝜙 Z. If all groups G k = (F ab
n )⊗k o𝜙k

Z, k ≥ 1, are residually
nilpotent, then 𝛾𝜔2(G ) = 1. Wherein if G is not residually nilpotent, then
the length of its lower central series is equal to 𝜔2.
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Main results for groups Fn o𝜙 Z

Theorem C

Let G = Fn o𝜙 Z. If all groups ̂︀Gi = 𝛾i (Fn)/𝛾i+1(Fn)ô︀𝜙i
Z, i ≥ 1, are

residually p-finite, then G is residually p-finite.

Theorem D

Let G = Fn o𝜙 Z. If all groups G k = (F ab
n )⊗k o𝜙k

Z, k ≥ 1, are residually
p-finite, then G is residually p-finite. In particular, the length of the lower
central series of G is equal to 𝜔.

Theorem E

Let G = Fn o𝜙 Z, 𝜙 ∈ Aut(Fn) and [𝜙] ∈ GLn(Z). If all eigenvalues of [𝜙]
are integers, then G is residually nilpotent. Wherein,
a) if all the eigenvalues are equal to 1, then G is residually p-finite for

any prime p;
b) if there is at least one eigenvalue that equal to −1, then G is

residually 2-finite.
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Main results for groups F2 o𝜙 Z

Theorem F
The group G = F2o𝜙Z, 𝜙 ∈ AutF2 is residually nilpotent if and only if
det[𝜙] = 1 and tr[𝜙] ̸∈ {1, 3}, or det[𝜙] = −1 and tr[𝜙] ≡ 0 (mod 2). At the
same time, if det[𝜙] = 1, then G is residually p-finite for any prime divisor of
tr[𝜙]− 2, and if det[𝜙] = −1, then G is residually 2-finite.

Also, for any group of this type we find the length of its lower central series.

Theorem G
For the lower central series of G = F2o𝜙Z, 𝜙 ∈ AutF2, there are only three
possibilities:

a) 𝛾𝜔(G ) = 𝛾2(G );

b) 𝛾𝜔(G ) = 1;

c) 𝛾𝜔2(G ) = 1 and the length of the lower central series is equal to 𝜔2.
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Main results for groups F2 o𝜙 Z

Proposition H

For the group G = F2o𝜙Z the equalities 𝛾𝜔(G ) = 𝛾2(F2) = F2 hold if and
only if det[𝜙] = 1, tr[𝜙] ∈ {1, 3}, or det[𝜙] = −1, tr[𝜙] = ±1.

Theorem I

Let G = F2o𝜙Z. If det[𝜙] = −1 and tr[𝜙] is an odd number, tr[𝜙] ̸= ±1,
then the length of the lower central series of G is equal to 𝜔2.

Lemma J

The group G = F2o𝜙Z contains a residually nilpotent subgroup
gr(x1, x2, t

2) of index 2 in all cases except det[𝜙]=−1, tr[𝜙] = ±1. In the
cases det[𝜙] = −1, tr[𝜙] = ±1 it contains a residually nilpotent subgroup
gr(x1, x2, t

4) of index 4. Where the group gr(x1, x2, t
k), k = 2, 4, is

isomorphic to F2o𝜙kZ
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