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Preliminary Information

Following Yu.L. Ershov. 1, Yu.L. Ershov 2, S.S. Goncharov, Yu.L. Ershov 3,

give the basic de�nitions.

De�nition 1.1.

Algorithmic representation of a countable system M = 〈M; Σ〉 of e�ective
signature Σ is any such mapping of µ of the set of natural numbers ω to

the main set of M of system M, for which there is an e�ective family FΣ

computable functions representing Σ-operations of the system M in the

numbering of µ, that is, any σ ∈ Σ-operation represented by its

corresponding computable function fσ ∈ FΣ, that ∀x (σµ(x) = µfσ (x)).

1Yu.L. Ershov. Theory of numberings. Moscow., Nauka, 1977. (in Russian)
2Yu.L. Ershov. Solvability Problems and Constructive Models. Moskow., Nauka,

1980. (in Russian)
3S.S. Goncharov, Yu.L. Ershov. Constructive Models. Siberian School of Algebra and

Logic, Kluwer Academic / Plenum Publishers, New York ets., 2000.
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Preliminary Information

De�nition 1.2.

If µ is algorithmic representation of system M, then the pair (M, µ) is

called a numbered system.

All the homomorphisms of numbered systems we consider are computable,

that is, they are supported by functions that are computable on

representations in the following sense.

De�nition 1.3.

The homomorphism ϕ : M→ N is called the computable homomorphism

(or morphism) of the numbered models (M, µ)→ (N, ν), if there is such a

computable function h, that ϕµ = νh.

Further, by the homomorphisms of numbered systems, we mean their

morphisms, i.e. we work in the category of numbered systems with

morphisms as e�ective on numbers of homomorphisms.
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Preliminary Information

The kernel of the representation µ of system M is the equivalence

{〈x , y〉|µx = µy}. If µ is a representation, then its kernel will be denoted

through ker(µ).
Let η be a �xed equivalence on ω and M be a system with a representation

with a kernel equal to η. Then the system M will be called represented

over η (or η-system).

With a �xed system, classical is the problem of studying its various

representations and the relations between them, in particular, the problem

of the existence of good representations (for example, computable) and the

relations between them (including uniqueness, accurate to computable

isomorphism, representation).

On the other hand, you can �x the representation kernel and study the

general properties of systems that have representations with this kernel.

This approach seems appropriate from the point of view of the theory of

representations of systems in the framework of theoretical computer

science.
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Preliminary Information

De�nition 1.4.

A numbered system, the kernel and all the main relations of which are

computable (enumerable, co-enumerable) is called computable (positive,

negative).

If (M, µ), (N, ν) are two numbered systems, then we say that (M, µ) is

reduced to (N, ν) if there is a computable isomorphism from M onto N.

Let's say that η0 m is reduced to η1 (in the notation η0 6m η1) if there is

such a computable function g that x = y (mod η0)⇔ g(x) = g(y)
(mod η1) è ∀y∃x(g(x) = y (mod η1)). If η0 6m η1 ∧ η1 6m η0, we will

assume that η0 ≡m η1. Then ≡m is an equivalence on the classes of which

the induced 6m partial order is correctly de�ned, which we will denote with

the same sign. As usual, m-degree of the equivalenñe η (in the notation

dm(η)) we call the set {η′|η ≡m η′}.
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Three theses on the priority of negativity over positivity

Thesis 1

Algorithmical de�ned topological neighborhoods, the presence of which

allows to solve the key problem of recognition in algorithmically de�ned

complex systems. For negative (and, more generally, for computably

separable) equivalences, the topological spaces generated by computable

subsets will be T4-spaces.

Thesis 2

Representability over equivalences.

Thesis 3

Structural theory of computably separable numbered systems � a numbered

system is computably separable if and only if it is approximated by negative

systems.
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Linear orders with computable endomorphisms

Known 4, that there is a positively representable linear order that has no

computable representations. On the other hand ,5, every negatively

represented linear order has a computable representation. Therefore, the

question of the existence of computable representations for negatively

representable linear orders with endomorphisms is fundamental.

Theorem 2.1.

There is a negatively representable linear order with two endomorphisms,

which does not have positive representations.

Corollary 2.1.

There is a negatively representable linear order with endomorphisms that

does not have solvable representations.

4L. Feiner. Hierarchies of Boolean algebras. Journal of Symbolic Logic, 35 (2),
363�373, 1970.

5H.Kh. Kasymov, R.N. Dadazhanov. Negative dense linear orders. Sib. matem.
journal, 58 (6), 1306-1331, 2017.
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Linear orders with computable endomorphisms

A classical example of order and endomorphism on it is a natural series

with a natural order and function x + 1.

The algebra S = 〈ω; s〉 (without an order relation) is computably stable

with respect to positive representations, i.e. any of its positive

representations is computably isomorphic to the simplest.

On the other hand ,6, there is an nonsolvable negative representation of

this algebra. Against this background, the importance of order from an

algorithmic point of view demonstrates the following

Proposition 2.1.

Any negative representation of the natural order S≤ of natural numbers

with the function x + 1 is solvable.

6B. Khoussainov, T. Slaman, P. Semukhin.
∏0

1-Presentasions of Algebras.
Archive for Mathematical Logic ,45 (6), 769-781, 2006.
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Degrees of linear orders with endomorphisms

Proposition 3.1.

If the linear order is positively (negatively) represented over the negative

(positive) equivalence, then both the order and equivalence are algorithmic

solvable.

Further, taking into account proposition 3.1, expression �it is negatively

(positively) representable over negative (positive) equivalence� often we will

reduce to �it is representable over negative (positive) equivalence�, believing

by default that the negative (positive) representability of an order over

negative (positive) equivalence is meant.

We will be primarily interested in the representability of orders over

negative equivalents. A brief overview of the results on the representability

of orders over positive equivalences will be given below.
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Degrees of linear orders with endomorphisms

For negative equivalence η, we denote through L(η) the class of all linear

orders negatively represented over η, i.e. the types of isomorphisms of such

structures and on the set Π of all negative equivalences on ω we de�ne the

following binary relation 6ln:

η1 6ln η2 ⇔ L(η1) ⊆ L(η2),

which is a preorder on the set Π and its symmetric close ≡ln−e is an

equivalence by which factorization breaks the set of all negative

equivalences into classes ≡ln-equivalence.

The partial order 〈Π/ ≡ln;6ln〉 will be called structure of negative

representability of linear orders, and its elements � degrees of negative

representability of linear orders. Further, if it is clear what is involved, the

structure of negative representability of linear orders will be called simply

the structure of negative representability, and its elements � degrees.
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Degrees of linear orders with endomorphisms

To shorten symbols through dln(η), we will denote the degree of negative

representation of equivalence η. Let us also say that a linear order is

represented over a given degree if it is represented over some (and therefore

over any) equivalence from this degree.

Nonformally, ≡ln -equivalence of two negative equivalences means the

coincidence of the types of isomorphisms of linear orders represented above

them.

The structure of negative representability of linear orders re�ects the

algorithmic nature of equivalences in terms of the possibilities they provide

for the realization of important objects over them, to which linear orders

certainly belong. Clearly, the higher the 6ln is the ≡ln-degree, the more

realizations it provides. However, a priori, it cannot be claimed that

6ln-top ≡ln-degrees are always preferable to 6ln-lower degrees.
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Degrees of linear orders with endomorphisms

So, for example, over any negative equivalence, we present a completely

meaningful class of linear orders, and if the task is to determine the

maximum "re�ned" class of η-like (η � the type of ordering of rational

numbers) orders, then it may turn out that it is more expedient to choose

implementations in the lower ≡ln-degrees. Such an approach may also be

useful in theoretical computer science.

Note that �nite negative equivalences generate isolated degrees in the

structure of negative representability. From a descriptive point of view, it is

reasonable to consider orders over in�nite equivalences. It is in the

assumption of the absence of �nite degrees that we will conduct our

consideration. Discarding all ≡ln-classes containing �nite equivalences, we

get the constraints of the relations 6ln,≡ln on in�nite negative

equivalences. Everywhere, the structure of negative representability is

considered in the context of the absence of degrees containing �nite

equivalences.
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Degrees of linear orders with endomorphisms

We say that the linear order 〈L;�, ε0, ε1 . . . 〉 with endomorphisms

ε0, ε1 . . . is computably (positively, negatively) representable over the

equivalence η on the set of natural numbers ω, if there is such a numbering

of ν for L with a numbering equivalence of η, in which all endomorphisms

are computable, and the sets of ν-numbers of equality and order relations

are computable (positive, accordingly negative).

For negative equivalence η through Le(η), we denote the class of all linear

orders with endomorphisms negatively represented over η and on set Π we

enter the following binary relation 6ln−e :

η1 6ln−e η2 ⇔ Le(η1) ⊆ Le(η2),

which is a preorder on the set Π and its symmetric closure ≡ln−e is an

equivalence by which factorization breaks the set of all negative

equivalences into ≡ln−e-equivalence classes.
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Degrees of linear orders with endomorphisms

The partially ordered set 〈Π/ ≡ln−e ;6ln−e〉 will be called structure of

negative representability of linear orders with endomorphisms, and its

elements � degrees of negative representability of linear orders with

endomorphisms.

Let Σ be the set of in�nite positive equivalences and the relation η1 6lp η2
on Σ means that every linear order, positively represented over η1,
positively represented over η2. Similarly to the negative case, by

symmetrically closing the preorder 6lp and factorizing with respect to the

obtained equivalence relation on the set of all in�nite positive equivalences,

we obtain the structure of positive representability of linear orders

〈Σ/ ≡lp;6lp〉, which turned out to be completely di�erent, than the

structure of negative representability of linear orders.

Finally, we de�ne the relation η1 6lp−e η2 on a set of positive equivalences,

which means that every linear order with endomorphisms, positively

represented over η1, is positively represented over η2.
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Degrees of linear orders with endomorphisms

Similarly, the structure of positive representability of linear orders with

endomorphisms 〈Σ/ ≡lp−e ;6lp−e〉 is determined.

Proposition 3.2.

Let ηe be a perfect positive equivalence with a compressed characteristic

transversal. Then the degree dlp(ηe) is the smallest element in the

structure of lp-degrees.

Thus, a non-empty set of all those positive equivalences over which we will

not represent any linear order at all form one lp-degre of positive

representability and this degree is dlp(ηersh), which de�nes an empty class

of linear orders represented above it. Obviously, this degree is the smallest

element in the structure of positive representability of linear orders, as

noted in7, although the indicated work did not use the equivalence ηe .

7E. Fokina, B. Khoussainov, P. Semukhin, D. Turetskiy. Linear Orders Realized by
C.E. Equivalence Relations. Journal of Symbolic Logic, 81 (2), 463�482, 2016.
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Degrees of linear orders with endomorphisms

In the same work, in particular, it is shown that the structure 〈Σ/ ≡lp;6lp〉
does not have the largest element, but has the maximum (it will be the

degree dlp(id ω)), there is an in�nitely decreasing chain of degrees of

positive representation and there are incomparite degrees (an analogue of

the Friedberg-Muchnik theorem for degrees of positive representability of

linear orders).

In the framework of the ideology of theoretical computer science, instead of

linear orders, other objects can also be considered, including universal

algebras (without �xing a signature), which are widely used in abstract

data types and object-oriented programming. At the same time, reasonable

extensions of the class of equivalences considered also allow you to obtain

structures with meaningful properties. However, it seems that it is low

degrees that can be of signi�cant interest from the point of view of

theoretical computer science.
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Degrees of linear orders with endomorphisms

Corollary 3.1.

There are incomparable degrees of negative representability of linear orders

with endomorphisms.

Corollary 3.2.

A partially ordered set of degrees 〈Π/ ≡ln−e ;6ln−e〉 is not an upper

half-lattice.

Corollary 3.3.

There is a maximal degree of negative representability of linear orders with

endomorphisms.

Corollary 3.4.

The structure of the degrees of negative representability of linear orders

with endomorphisms is in�nite.
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Standard representations

We will show that the ≡ln−e⊂≡ln attachment is its own. To do this,

consider in more detail the connection between the concepts of �nitely

generation, the generation of a �nite set of elements of an algebra of an

in�nite signature and the standardness of algorithmic representations of

algebras.

De�nition 4.1.

An algebra is called �nitely generated (locally �nite) if its �nitely generated

�nite depletion exists (accordingly, any �nite depletion of it locally �nite).

For �nite signatures, this de�nition is the same as classic.

De�nition 4.2.

An algebra is called a generated �nite set of elements if it is generated by a

�nite set of elements and a set of all its operations.
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Standard representations

De�nition 4.2 is substantially broader than de�nition 4.1, since from the

�nitely generation follows the generation of a �nite number of elements.

The opposite is not true. For example, let A = 〈ω; f0, f1, . . . 〉, where
∀n, x(fn(x) = n). Then the algebra A is generated by any of its elements,

but it is locally �nite.

From the point of view of computability, it is not so important whether we

apply a �nite number of operations or an e�ective in�nite set of them in

the process of generating algebra, but the �niteness of the set of generating

elements is fundamental.

De�nition 4.3.

Algorithmic representation γ of universal algebra A is called standard if it

reducible to any algorithmic representation of this algebra, i.e., if ν � any

algorithmic representation of algebra A, then for suitable computable

function of h is fair γ = νh.
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Standard representations

In other words, standard representations are those that form the smallest

element relative to the reducibility of representations in a set of classes of

equivalent representations (modulo the relation "be mutually reducible).

Clearly, not all algebras have standard representations. For example, if A is

an algebra of an empty signature, then it has a continuum of minimal

(relative to reducibility) classes of equivalent representations.

Proposition 4.1.

Any universal algebra of an e�ective signature generated by a �nite number

of elements has a standard algorithmic representation.
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Standard representations

Theorem 4.1.

Over any negative equivalence there is representation such a negative linear

order with endomorphisms, for which this representation is standard.

Corollary 4.1.

Any unsolvable negative equivalence is the kernel of a linear order

representation with endomorphisms that does not have a positive

representation.

Any equivalence is the kernel of a standard representation of a suitable

algebra. However, if we are talking about linear orders and, especially,

orders with endomorphisms, then the situation is radically changing.

Moreover, the existence of positive equivalences was noted above, over

which no linear orders are representable at all.
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Standard representations

The structure of ln-degrees contains a strictly in�nitely decreasing chain of

degrees · · · 6ln (η2) 6ln d(η1) 6ln d(η0) = d(id ω). Taking into account

the existence of in�nite negative equivalence, each class of which is not

computable, we have the fact of embedding in the ordered set of ln-degrees
of the ordinal type 1 + ω∗, where ω∗ is the order of dual ω.

Open question 1.

Are there incomparable in�nite ln-degrees?

Proposition 4.2.

Every computable linear order with at least one limit element has an

unsolvable negative representation.
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Standard representations

De�nition 4.4.

A ln-degree is called splittable if it contains more than one ln − e-degree.

Proposition 4.3.

If ηn = η(α1, . . . , αn), where α1, . . . , αn are non-intersecting

noncomputable and co-enumerated sets, then the degree dln(ηn) is

splittable.

From here comes the important

Corollary 4.2.

≡ln−e ≡ln.

N.Kh. Kasymov, R.N. Dadazhanov, S.K. Zhavliev DEGREES OF REPRESENTABILITY OF LINEAR ORDERS25 / 33



ln-degrees, ln − e-degrees and ln − ek-degrees

Standard representations give a powerful method for comparing the degrees

of negative representability of linear orders with endomorphisms and make

it possible to establish close connections between m-degrees and

ln − e-degrees.

Proposition 5.1.

≡ln−e⊆≡m.

Open question 2.

Is the embedding ≡ln−e⊆≡m own?

Proposition 5.2.

6ln−e$6m.
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ln-degrees, ln − e-degrees and ln − ek-degrees

According to proposal 5.2, if equivalences η0, η1 are such that η0 
m η1,
dln−e(η0) 
ln−e dln−e(η1).
For 
ln-reducibility this proposition is incorrect as it shows following

Proposition 5.3.

There are such negative equivalences η0, η1, lying in various ln-degrees that
η0 
m η1, but η0 6ln η1.

It turned out that any two ln − e-degrees comparable to relation 6ln−e lie

in one ln-degree.

Proposition 5.4.

If dln−e(η1) 6ln−e dln−e(η2), then dln(η1) = dln(η2).
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ln-degrees, ln − e-degrees and ln − ek-degrees

There is an important

Proposition 5.5.

≡m⊆≡ln.

Recall that a subset of a partial order is called an antichain if no pair of

di�erent elements of it is comparable with respect to a given order.

Theorem 5.1.

There is a sequence of negative equivalences η0, η1, . . . , for which the

corresponding sequence of m-degrees is strictly increasing relative to the

order of 6m ïî òèïó ω, sequence of ln-degrees � strictly decreasing relative

to 6ln by type ω∗ (note here that natural embedding

{dm(ηn)} 7−→ {dln(ηn)} is antiisomorphism), and the sequence of

ln − e-degrees relative to 6ln−e forms an antichain.
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ln-degrees, ln − e-degrees and ln − ek-degrees

Proposition 5.6.

Let η1, η2 positive equivalences, which are the kernels of standard

numberings of suitable linear orders with endomorphisms. Then fairly:

1) d(η1) 6lp−e d(η2)⇒ η1 ≡lp η2;
2) dlp−e(η1) = dlp−e(η2)⇒ dm(η1) = dm(η2);
3) η1 6lp−e η2 ⇔ η1 ≡m η2.

Now we introduce another concept of the degree of negative

representability of the linear order "intermediate" between ln-degrees and
ln − e-degrees. The concept of ln − e-degree is in a sense e�ectively

"unlimited", a very powerful tool. Moreover, we note that multi-place

operations consistent with linear order can be interpreted through

single-place (translations). Thus, ordered groups, rings, etc., arise.
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ln-degrees, ln − e-degrees and ln − ek-degrees

Recall that translation is called a single-place operation in the functional

signature of the system, it can be with parameters as �xed elements of the

main set of the system. The oparation f from two or more arguments will

be called ≤-vadmissible (relative to the order of ≤) if
x ≤ y ⇒ f (x) ≤ f (y). For a single-seat operation, ≤-admissiblity means

that it is a linear order endomorphism.

Proposition 5.7.

If all operations of an algebraic system in which the linear order ≤ is given

are ≤-admissible, then all translations are endomorphisms. The opposite is

true also, that is, if all translations are consistent with ≤, then all

operations are ≤-admissible.

Thus, the classical concept of an operation consistent with an order is

included in the concept of a computable family of endomorphisms of this

order.
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ln-degrees, ln − e-degrees and ln − ek-degrees

From a practical point of view, linear orders with a �nite number of

endomorphisms are more foreseeable.

Let η1, η2 be negative equivalences.

De�nition 5.1.

We say that η1 is ln − ek -reduced to η2 (in the designations η1 6ln−ek η2),
if every linear order with no more than k (k ∈ ω) endomorphisms,

negatively represented over η1, negatively represent over η2.

As above, ln − ek -degrees will be considered in the context of the absence

of degrees of �nite negative equivalences.

Directly from the de�nition follows the property ≡ln−ek+1
⊆≡ln−ek . Note

that ≡ln−e0=≡ln.
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ln-degrees, ln − e-degrees and ln − ek-degrees

Already at the level of k = 2, fundamental di�erences arise in the structure

of ln degrees and ln − e2 degrees, which con�rms

Proposition 5.8.

There are such negative equivalencies η0, η1, that η0 
ln−e2 η1 è

η1 
ln−e2 η0, but η0 6ln η1.

Corollary 5.1.

In the set of lp − ek -degrees at k > 2 there are incomparable elements and

there is a maximal element.

How di�erent are the structures of ln-degrees and ln − e1-degrees � an

open question.

Similarly, we can de�ne lp − ek -degrees.
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Thank you for your attention!!!
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